Skip to main content

Advertisement

Log in

Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

Dispositifs à faible coût d’extraction d’eau souterraine: une comparaison de la Pompe EMAS avec la Pompe à Corde

Extracción de agua a bajo costo a partir de fuentes de agua subterránea: una comparación entre la Bomba EMAS y la Bomba de Mecate

地下水源的低成本提水:EMAS泵和Rope泵的比较

Extração de água de baixo custo a partir de fontes de água subterrânea: comparação da Bomba EMAS com a Bomba de Mecate

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93–111%), but less so at deeper depths (63–85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47–97%). Cost of materials to construct the EMAS Pump were 21–60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in “self-supply” groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

Résumé

En Afrique sub-Saharienne, les systèmes d’alimentation en eau souterraine à bas coût offrent de grandes opportunités d’accès à l’eau potable à une population de plus de 300 millions de personnes qui en est. actuellement privée. Une étude comparative a été réalisée en Ouganda entre la Pompe EMAS (conçue par Escuela Móvil Aguas y Saneamiento Básico) et la Pompe à Corde, deux dispositifs manuels d’extraction d’eau à bas coût adaptés au pompage d’eau souterraine d’aquifères superficiels. Les débits de pompage, l’énergie dépensée, les coûts des matériaux, et les exigences de fabrication ont été analysés. L’accent a été mis sur l’application à faible coût pour une utilization dans des systèmes aquifères peu profonds au niveau d’un usage domestique dans des pays en voie de développement, particulièrement en Afrique sub-saharienne. Sur le site d’étude en Nord Ouganda, plusieurs tests ont été réalisés sur des ouvrages forés. Deux variantes de chaque pompe ont été testées par un utilisateur homme et une utilisatrice femme, avec des pompages à différentes profondeurs, les niveaux statiques de l’eau s’échelonnant de 5 à 28 m. Les résultats ont montré des performances comparables en termes de débit moyen de pompage pour des profondeurs comprises entre 5 à 18 m (93–111%) pour les versions les plus courantes de la Pompe EMAS et de la Pompe à Corde; pour des profondeurs plus importantes, les performances sont moindres (63–85%). Les débits de pompage normés (considérant l’énergie dépensée) ont accentué les différences entre ces versions de la Pompe EMAS et la Pompe à Corde (47–97%). Le coût des matériaux pour construire une Pompe EMAS correspond à 21–60% de celui de la Pompe à Corde, et les exigences de fabrication pour la Pompe EMAS sont également moins importantes. Sur la base des facteurs évalués, il est. conclu que la Pompe EMAS a un potentiel de succès pour l’alimentation autonome à partir des systèmes aquifères en Afrique subsaharienne et qu’elle est. particulièrement adaptée pour une exploitation à faible coût des eaux souterraines des aquifères peu profonds.

Resumen

En el África subsahariana, los sistemas de abastecimiento de agua subterránea de bajo costo ofrecen grandes oportunidades a una población de más de 300 millones de habitantes sin acceso a agua potable. Se realizó un estudio comparativo en Uganda de la Bomba EMAS (diseñada por la Escuela Móvil Aguas y Saneamiento Básico) con la llamada Bomba de Mecate, dos dispositivos de elevación manual de agua de bajo costo, apropiados para el bombeo desde fuentes subterráneas poco profundas. Se analizaron los caudales de bombeo, la energía gastada, los costos de materiales y los requerimientos para la construcción. El foco fue la aplicación de bajo costo para uso en sistemas de aguas subterráneas someras a nivel doméstico en los países en desarrollo, particularmente en el África subsahariana. El sitio de estudio fue en el norte de Uganda, con la realización de pruebas en varios pozos perforados. Dos variantes de cada bomba fueron probadas por un usuario masculino y uno femenino, bombeando desde múltiples profundidades del nivel estático del agua que oscilaban entre 5 y 28 m. Los resultados demostraron que la versión más común de la Bomba EMAS funciona en forma similar a la versión comparable de la Bomba de Mecate en términos de la velocidad promedio de bombeo en el rango de una profundidad de 5 a 18 m (93–111%) pero menos a profundidades más profundas (63–85%). Los caudales de bombeo normalizados (considerando la energía gastada) acentuaron las diferencias entre estas versiones de la Bomba EMAS y la Bomba de Mecate (47–97%). El costo de los materiales para la construcción de la Bomba EMAS fue del 21–60% de los de la Bomba de Mecate, y los requisitos de construcción de la Bomba EMAS también fueron menores. Sobre la base de los factores evaluados, se concluye que la Bomba EMAS tiene posibilidades de éxito en los sistemas de “autoabastecimiento” de agua subterránea en el África subsahariana y es particularmente apropiado vincularlas con fuentes de aguas subterráneas poco profundas a bajo costo.

摘要

在撒哈拉沙漠以南非洲地区,低成本的地下水供水系统为目前没有使用供水系统的人们提供了使用饮用水的巨大机遇。在乌干达开展了(由Escuela Móvil Aguas y Saneamiento Básico设计)的EMAS水泵和商品名为Rope的水泵的比较研究,两种泵都是低成本的手动提水设施,适合从浅层地下水源抽水。分析了抽水量、能量消耗、材料成本以及建设要求。重点分析了发展中国家,特别是撒哈拉以沙漠非洲地区的发展中国家家庭层面上使用浅层地下水系统中低成本采用哪种水泵的问题。研究地点位于乌干达南部,在几个钻孔中进行了测试。通过男女使用者从5–28米多重水位状态深度抽水对每种泵的两个变量进行了测试。结果显示,最普通版本的EMAS泵与比较版本的Rope泵在5–18米的平均抽水量类似(93–111%),但在较深的地方前者少于后者(63–85%)。标准化的抽水量(就消耗的能量而论)加重了这些版本的EMAS泵和Rope泵的偏差(47–97%)。建设EMAS泵的材料成本是建设Rope泵的材料成本21–60%,EMAS泵的建设要求也少。基于评价的因素,得出的结论就是EMAS泵在撒哈拉以南沙漠地区的“自供”地下水系统中具有成功的潜力,特别适合连接低成本的浅层地下水源。

Resumo

Na África subsaariana, sistemas de suprimento de água subterrânea de baixo custo oferecem grandes oportunidades de acesso à água potável para uma população pouco suprida de > 300 milhões. Um estudo comparativo foi realizado em Uganda com a Bomba EMAS (projetada pela Escuela Móvil Aguas y Saneamiento Básico) com a bomba tradicionalmente nomeada de Bomba de Mecate, dois modos manuais de baixo custo de extração de água, apropriados para fontes superficiais de água subterrânea. Foram analisadas taxas de bombeamento, energia gasta, custos de material e requerimentos de construção. O foco foi direcionado ao uso com baixo custo em sistemas de água subterrânea superficiais, no nível de uma moradia, em países em desenvolvimento, especialmente na África subsaariana. O local do estudo foi o norte de Uganda, com testes executados em vários poços perfurados. Duas variantes de cada bomba foram testadas por um usuário masculino e um feminino, bombeando de várias profundidades estáticas, variando de 5 a 28 m. Os resultados demonstraram que a versão comum da Bomba EMAS teve um desempenho similar à uma versão comparável da Bomba de Mecate, em termos de taxa de bombeamento média em uma profundidade entre 5 e 18 m (93–111%), mas um desempenho inferior em profundidades maiores (63–85%). Taxas de bombeamento normalizadas (considerando a energia gasta) acentuaram a diferença entre estas versões da Bomba EMAS e da Bomba de Mecate (47–97%). Os custos de materiais para construir a Bomba EMAS foram de 21–60% dos da Bomba de Mecate, e os requerimentos para a Bomba EMAS foram também menores. Baseado nos fatores avaliados, se conclui que a Bomba EMAS tem um potencial de sucesso em sistema de água subterrânea “auto-serviço’ na Áfria subsaariana e é particularmente apropriado quando associada à fontes de águas subterrâneas de baixo custo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitations. Sports Med 33:517–538

    Article  Google Scholar 

  • Akers DB, MacCarthy MF, Cunningham JA, Annis J, Mihelcic JR (2015) Lead (Pb) contamination of self-supply groundwater systems in coastal Madagascar and predictions of blood lead levels in exposed children. Environ Sci Technol 49:2685–2693

    Article  Google Scholar 

  • Alberts JH (2004) The rope pump: an example of technology transfer. Waterlines 22(3):22–25

    Article  Google Scholar 

  • Brand A (2004) Low-cost pump alternatives for rural communities in Honduras. Water and Sanitation Program, Lima, Peru

    Google Scholar 

  • Buchner W (2006) EMAS: water for everybody—a selection of appropriate technologies to be used for drinkable water, 5th edn. EMAS, La Paz, Bolivia

    Google Scholar 

  • Bunduka LE (2013) Sierra Leone pilots EMAS technologies: Welt Hunger Hilfe. Welt Hunger Hilfe, Bonn, Germany

  • Burney JA, Naylor RL, Postel SL (2013) The case for distributed irrigation as a development priority in sub-Saharan Africa. Proc Natl Acad Sci 110(31):12512–12517

    Article  Google Scholar 

  • Carpenter JD (2014) An assessment of the EMAS pump and its potential for use in household water systems in Uganda. MSc Thesis, University of South Florida, Tampa, FL, USA. http://scholarcommons.usf.edu/etd/4996/. Accessed 01 April 2016

  • Carter RC, Ross I (2016) Beyond functionality of handpump-supplied rural water services in developing countries. Waterlines 35(1):94–11

    Article  Google Scholar 

  • Carter R, Tyrrel S, Howsam P (1999) The impact of sustainability of community water supply and sanitation programs in developing countries. Water Environ J 13:292–296

    Article  Google Scholar 

  • Coloru B, Mgaya S, Pozz-Taubert R (2012) Appropriate technologies for rural water supply: a comparative study between “rope pumps” and conventional piston pumps on water quality and other sustainability parameters. Fondazione ACRA-CCS, Milan

  • Connect International (2016) Connect International website. www.connectinternational.nl. Accessed on 01 December 2016

  • de Fraiture C, Giordano M (2014) Small private irrigation: a thriving but overlooked sector. Agric Water Manag 131:167–174

    Article  Google Scholar 

  • EMAS (2016) EMAS website. www.emas-international.de. Accessed 01 December 2016

  • Foster T (2013) Predictors of sustainability for community-managed handpumps in sub-Saharan Africa: evidence from Liberia, Sierra Leone, and Uganda. Environ Sci Technol 47:12037–12046

    Article  Google Scholar 

  • Foster S, Chilton J, Moench M, Cardy F, Schiffler M (2000) Groundwater in rural development. World Bank technical paper no. 463, World Bank, Washington, DC

  • Foster S, Tuinhof A, Steenbergen FV (2012) Managed groundwater development for water-supply security in sub-Saharan Africa: investment priorities. Water South Africa 38:359–366

    Google Scholar 

  • Harvey PA, Drouin T (2006) The case for the rope-pump in Africa: a comparative performance analysis. J Water Health 04:499–510

    Google Scholar 

  • Harvey P, Reed R (2007) Community-managed water supplies in Africa: sustainable or dispensable? Community Dev J 42:365–378

    Article  Google Scholar 

  • IEA (2014) World energy outlook 2014. OECD and International Energy Agency, Paris

    Book  Google Scholar 

  • Jasechko S, Taylor RG (2015) Intensive rainfall recharges tropical groundwaters. Environ Res Lett 10(12):124015

  • JMP (2015) Progress on sanitation and drinking water: 2015 update and MDG assessment. WHO and UNICEF, New York

    Google Scholar 

  • Johnston RB, Berg M, Johnson CA, Tilley E, Hering JG (2011) Water and sanitation in developing countries: geochemical aspects of quality and treatment. Elements 7(3):163–168

    Article  Google Scholar 

  • Keytel LR, Goedecke JH, Noakes TD, Hiiloskorpi H, Laukkanen R, Van Der Merwe L, Lambert EV (2005) Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci 23:289–297

    Article  Google Scholar 

  • Lockwood H, Smits S (2011) Supporting rural water supply: moving towards a service delivery approach. Practical Action, Bourton, UK

  • MacCarthy MF (2004) The development of the rope and washer pump for use with tubewells in Maputaland, South Africa. MSc Thesis, University of Southampton, Southampton, UK

    Google Scholar 

  • MacCarthy MF, Annis JE, Mihelcic JR (2013a) Unsubsidised self-supply in eastern Madagascar. Water Altern 6:424–438

    Google Scholar 

  • MacCarthy MF, Buckingham JW, Mihelcic JR (2013b) Increasing access to low-cost water supplies in rural areas: EMAS household water supply technologies in Bolivia. RWSN, St. Gallen, Switzerland

    Google Scholar 

  • MacDonald AM, Bonsor HC, Dochartaigh BÉÓ, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7(2):024009

    Article  Google Scholar 

  • Maiga H, Maiga B, Sutton S (2006) Self-supply in Mali. Waterlines 25(1):13–14

    Article  Google Scholar 

  • Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990) A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 51:241–247

    Google Scholar 

  • Mihelcic JR, Phillips LD, Watkins DW (2006) Integrating a global perspective into engineering education and research: engineering international sustainable development. Environ Eng Sci 23:426–438

    Article  Google Scholar 

  • Mihelcic JR, Fry LM, Myre EA, Phillips LD, Barkdoll BD (2009) Field guide to environmental engineering for development workers: water, sanitation, and indoor air. ASCE, Reston, VA

  • Morgan P, Chimbunde E (1991) Upgrading family wells in Zimbabwe. Waterlines 9(3):10–12

    Article  Google Scholar 

  • MWE (2012) National water resources assessment. Ministry of Water and Environment, Directorate of Water Resource Management, Kampala, Uganda

  • NETWAS Uganda and WaterAid Uganda (2013) WASHtech TAF Pilot Assessment: recommendations for the sustainability and scalability of the rope pump in Iganga, Mayuge and Mpigi districts, Uganda. NETWAS Uganda, Kampala, Uganda

  • Okotto-Okotto J, Okotto L, Price H, Pedley S, Wright J (2015) A longitudinal study of long-term change in contamination hazards and shallow well quality in two neighbourhoods of Kisumu, Kenya. Int J Environ Research Public Health 12(4):4275–4291

    Article  Google Scholar 

  • Oluwasanya G, Carter R, Smith J (2011) Self-supply systems: urban dug wells in Abeokuta, Nigeria. Water Sci Technol 11(2):172–178

    Google Scholar 

  • Prüss-Ustün A, Bartram J, Clasen T, Colford JM, Cumming O, Curtis V, Bonjour S, Dangour AD, De France J, Fewtrell L, Freeman MC, Gordon B, Hunter PR, Johnston RB, Mathers C, Mäusezahl D, Medlicott K, Neira M, Stocks M, Wolf J, Cairncross S (2014) Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Tropical Med Int Health 19:894–905

    Article  Google Scholar 

  • RWSN (2009) Handpump data 2009 selected countries in sub-Saharan Africa. RWSN, St Gallen, Switzerland

    Google Scholar 

  • RWSN Executive Steering Committee (2010) Myths of the rural water supply sector. RWSN, St. Gallen, Switzerland

    Google Scholar 

  • Shah T, Alam M, Kumar MD, Nagar RK, Singh M (2000) Pedaling out of poverty: social impact of a manual irrigation technology in South Asia, vol 45. IWMI, Colombo, Sri Lanka

  • Shephard RJ, Aoyagi Y (2012) Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. Eur J Appl Physiol 112:2785–2815

    Article  Google Scholar 

  • Still DA, Nash SR, MacCarthy MF (2004) South African experience with hand-augured shallow wells in coastal aquifers. In: Proc. IWA/WAMDEC Conference, Victoria Falls, Zimbabwe, July 2004, pp 28–30

  • Sutton S (2011) Accelerating self supply. RWSN Field Note no. 48-2, St. Gallen, Rural Water Supply Network, Switzerland

  • Sutton S, Gomme J (2009) Transferring the rope pump to Africa: a long and winding road? Waterlines 28:144–160

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1998) The dynamics of groundwater flow in the regolith of Uganda. Intl Contrib Hydrogeol 18:97–114

    Google Scholar 

  • Weight, E, Yoder, R, Keller, A (2013) Manual well drilling investment opportunity in Ethiopia, vol 155. IWMI, Colombo, Sri Lanka

Download references

Acknowledgements

The authors thank Patrick Woodson, Dustin Bales, and the local pump testers in Uganda, for their support in field data collection, as well as Mercy Corps and Peace Corps for logistical support. This material is based upon work supported by the National Science Foundation under Grant No. DUE 0965743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. MacCarthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacCarthy, M.F., Carpenter, J.D. & Mihelcic, J.R. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump. Hydrogeol J 25, 1477–1490 (2017). https://doi.org/10.1007/s10040-017-1580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1580-6

Keywords

Navigation