Skip to main content
Log in

Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia)

Comparaison de techniques d’estimation de recharge des eaux souterraines pour un système aquifère alluvial lié à un cours d’eau temporaire (Queensland, Australie)

Comparación de las técnicas de estimación de recarga de agua subterránea en un sistema acuífero aluvial con una corriente intermitente/efímera (Queensland, Australia)

(澳大利亚昆士兰)伴有间歇性/短暂性河流的冲积含水层系统地下水补给估算技术的对比

Comparação de técnicas estimativas de recarga das águas subterrâneas em um sistema aquífero aluvial com um fluxo intermitente/efêmero (Queensland, Austrália)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study demonstrates the importance of the conceptual hydrogeological model for the estimation of groundwater recharge rates in an alluvial system interconnected with an ephemeral or intermittent stream in south-east Queensland, Australia. The losing/gaining condition of these streams is typically subject to temporal and spatial variability, and knowledge of these hydrological processes is critical for the interpretation of recharge estimates. Recharge rate estimates of 76–182 mm/year were determined using the water budget method. The water budget method provides useful broad approximations of recharge and discharge fluxes. The chloride mass balance (CMB) method and the tritium method were used on 17 and 13 sites respectively, yielding recharge rates of 1–43 mm/year (CMB) and 4–553 mm/year (tritium method). However, the conceptual hydrogeological model confirms that the results from the CMB method at some sites are not applicable in this setting because of overland flow and channel leakage. The tritium method was appropriate here and could be applied to other alluvial systems, provided that channel leakage and diffuse infiltration of rainfall can be accurately estimated. The water-table fluctuation (WTF) method was also applied to data from 16 bores; recharge estimates ranged from 0 to 721 mm/year. The WTF method was not suitable where bank storage processes occurred.

Résumé

Cette étude démontre l’importance du modèle hydrogéologique conceptuel pour l’estimation des taux de recharge des eaux souterraines dans un système aquifère alluvial interconnecté avec un cours d’eau temporaire et intermittent dans le Sud-Ouest du Queensland, en Australie. Les conditions de perte/alimentation de ces cours d’eau sont habituellement l’objet de variations temporelles et spatiales, et la connaissance de ces mécanismes hydrologiques est essentielle pour l’estimation de la recharge. Les estimations du taux de recharge de 76 à 182 mm/an ont été déterminées en utilisant la méthode du bilan hydrique. La méthode du bilan hydrique fournit de larges et utiles approximations des flux de recharge et de décharge. La méthode du bilan massique du chlorure (CMB) et la méthode du Tritium ont été utilisées respectivement pour 17 et 13 sites, indiquant des taux de recharge de 1–43 mm/an (CMB) et de 4–553 mm/an (méthode du Tritium). Cependant, le modèle hydrogéologique conceptuel confirme que les résultats issus de la méthode CMB ne sont pas applicables pour certains sites dans ce contexte, en raison de l’écoulement de surface et des pertes au niveau de chenaux. La méthode du Tritium était appropriée pour le cas d’étude et pourrait être appliquée à d’autres systèmes alluviaux, à condition que la fuite des chenaux et l’infiltration diffuse des précipitations puissent être estimées précisément. La méthode de la fluctuation du niveau piézométrique de la nappe (WTF) a été appliquée sur des données de 16 forages ; les estimations de la recharge sont comprises entre 0 et 721 mm/an. La méthode WTF n’est pas adaptée lorsque des processus de stockage hyporhéique prennent place.

Resumen

Este estudio demuestra la importancia del modelo hidrogeológico conceptual para la estimación de las índices de recarga del agua subterránea en un sistema aluvial interconectado con una corriente efímera o intermitente en el sureste de Queensland, Australia. La condición perdedora/ganadora de estas corrientes está típicamente sujeta a variabilidad temporal y espacial, y el conocimiento de estos procesos hidrológicos es crítico para la interpretación de las estimaciones de recarga. Se determinaron estimaciones de la tasa de recarga de 76–182 mm/año utilizando el método del balance hídrico. El método del balance hídrico proporciona aproximaciones generales y útiles de los flujos de recarga y descarga. El método de balance de masa de cloruro (CMB) y el método del tritio se utilizaron en 17 y 13 sitios respectivamente, produciendo tasas de recarga de 1–43 mm/año (CMB) y 4–553 mm/año (método del tritio). Sin embargo, el modelo hidrogeológico conceptual confirma que los resultados del método CMB en algunos sitios no son aplicables en este escenario debido al flujo de superficie y la filtración en el canal. El método del tritio era apropiado aquí y podría aplicarse a otros sistemas aluviales, siempre que se pueda estimar con precisión la filtración en los canales y la infiltración difusa de las precipitaciones. El método de la fluctuación del nivel freático (WTF) también se aplicó a los datos de 16 perforaciones; Las estimaciones de recarga variaban de 0 a 721 mm/año. El método WTF no fue adecuado cuando se producían los procesos de almacenamiento de banco.

摘要

本研究展示了估算澳大利亚昆士兰东南部与间歇性或短暂性河流相连的冲积含水层系统地下水补给量水文地质概念模型的重要性。这些河流的渗失/盈水条件典型随着时间和空间的变化性而变化,了解这些水文过程对于解译补给估算量非常重要。采用水平衡方法确定的补给量估算值为每年76–182 mm。水平衡法提供了补给和排泄通量有用的近似值。分别在17个地方和13个地方采用了氯化物质量平衡法和氚方法,得出的补给量为每年1–43 mm(氯化物质量平衡法)和每年4–553 mm(氚方法)。然而,水文地质概念模型证实,由于坡面流和通道渗漏,一些地方采用氯化物质量平衡法得出的结果在这个背景下不适用。氚方法在这里是合适的,假如降雨的渠道渗漏和弥散入渗可精确估算的话,还可应用到其它冲积系统中。水位波动法也应用到16个钻孔的资料中;补给估算值每年为0–721 mm。在出现河岸储存过程的地方不适合使用水位波动法。

Resumo

Este estudo demonstra a importância do modelo conceitual hidrogeológico para a estimativa das taxas de recarga das águas subterrâneas em um sistema aluvial interconectado com um fluxo efêmero ou intermitente no sudeste de Queensland, na Austrália. A condição de perda/ganho desses fluxos é tipicamente sujeita a variabilidade temporal e espacial, e o conhecimento desses processos hidrológicos é crítico para a interpretação de estimativas de recarga. Estimativas da taxa de recarga de 76–182 mm/ano foram determinadas usando o método do balanço hídrico. O método do balanço hídrico fornece aproximações amplas e úteis de fluxos de recarga e descarga. O método do balanço de massa de cloretos (BMC) e o método de trítio foram utilizados em 17 e 13 locais respectivamente, resultando em taxas de recarga de 1–43 mm/ano (BMC) e 4–553 mm/ano (método de trítio). No entanto, o modelo conceitual hidrogeológico confirma que os resultados do método BMC, em alguns locais, não são aplicáveis neste cenário, devido ao escoamento superficial e perdas por canal. O método de trítio foi apropriado aqui e poderia ser aplicado a outros sistemas aluviais, desde que o as perdas por canal e a infiltração difusa da precipitação possam ser estimados com precisão. O método de flutuação do nível freático (FNF) também foi aplicado aos dados de 16 furos; estimativas de recarga variaram de 0 a 721 mm/ano. O método da FNF não foi adequado onde os processos de armazenamento em bancadas ocorreram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdalla OAE (2009) Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in north White Nile Rift, Sudan. Hydrogeol J 17(3):679–692

    Article  Google Scholar 

  • Abdulrazzak MJ, Sorman AU, Alhames AS (1989) Water balance approach under extreme arid conditions: a case study of Tabalah Basin, Saudi Arabia. Hydrol Process 3:107–122

    Article  Google Scholar 

  • Al-Charideh A (2012) Recharge rate estimation in the mountain karst aquifer system of Figeh Spring, Syria. Environ Earth Sci 65(4):1169–1178. doi:10.1007/s12665-011-1365-5

    Article  Google Scholar 

  • Al-Charideh A, Hasan A (2013) Use of isotopic tracers to characterize the interaction of water components and nitrate contamination in the arid Rasafeh area (Syria). Environ Earth Sci 70(1):71–82

    Article  Google Scholar 

  • Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195

    Article  Google Scholar 

  • Anan M, Yuge K, Nakano Y, Saptomo S, Haraguchi T (2007) Quantification of the effect of rice paddy area changes on recharging groundwater. Paddy Water Environ 5(1):41–47

    Article  Google Scholar 

  • Armstrong D, Narayan K (eds) (1998) Using groundwater response to infer recharge: part 5 of the basics of recharge and discharge. CSIRO, Collingwood, Australia

    Google Scholar 

  • Bureau of Meteorology (BOM) (2013) Commonwealth of Australia, daily rainfall, Toogoolawah. http://www.bom.gov.au/climate/data/. Accessed 1 August 2013

  • Carlson MA, Lohse KA, McIntosh JC, McLain JET (2011) Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. J Hydrol 409(1–2):196–211

    Article  Google Scholar 

  • Cartwright I, Morgenstern U (2012) Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens catchment, southeast Australia. J Hydrol 475:137–149. doi:10.1016/j.jhydrol.2012.09.037

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Stone D, Reid M (2007) Constraining modern and historical recharge from bore hydrographs, H-3, C-14 and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J Hydrol 332(1–2):69–92

    Article  Google Scholar 

  • Cendón DI, Larsen JR, Jones BG, Nanson GC, Rickleman D, Hankin SI, Pueyo JJ, Maroulis J (2010) Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. J Hydrol 392(3–4):150–163. http://www.sciencedirect.com/science/article/pii/S0022169410005007. Accessed November 2013

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Cox ME, James A, Hawke A, Raiber M (2013) Groundwater Visualisation System (GVS): a software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation. J Hydrol 491:56–72. http://www.sciencedirect.com/science/article/pii/S0022169413002321. Accessed December 2013

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41(1):1–9. doi:10.1029/2004WR003077

    Article  Google Scholar 

  • Crosbie RS, Morrow D, Cresswell RG, Leaney FW, Lamontagne S, Lefournour M (2012) New insights into the chemical and isotopic composition of rainfall across Australia. CSIRO Water for a Healthy Country Flagship, Canberra, Australia

    Google Scholar 

  • de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17

    Article  Google Scholar 

  • Department of Natural Resources and Mines (DNRM) (2012) Groundwater database. Department of Natural Resources and Mines, Brisbane, Australia

  • Department of Natural Resources and Mines (DNRM) (2013) Department of Natural Resources and Mines, Brisbane, Australia. http://watermonitoring.derm.qld.gov.au/host.htm. Accessed 8 October 2013

  • Eidem JM, Simpkins WW, Burkart MR (1999) Geology, groundwater flow, and water quality in the Walnut Creek watershed. J Environ Qual 28(1):60–69

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Guglielmi Y, Mudry J (1996) Estimation of spatial and temporal variability of recharge fluxes to an alluvial aquifer in a fore land area by water chemistry and isotopes. Ground Water 34(6):1017–1023

    Article  Google Scholar 

  • Hancox J, Garfias J, Aravena R, Rudolph D (2010) Assessing the vulnerability of over-exploited volcanic aquifer systems using multi-parameter analysis, Toluca Basin, Mexico. Environ Earth Sci 59(8):1643–1660

    Article  Google Scholar 

  • Harms BP, Pointon SM (1999) Land resource assessment of the Brisbane Valley, Queensland, Land Resources Bulletin. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109

    Article  Google Scholar 

  • Hutton LJ (1976) Chloride in rainfall in relation to distance from the coast. Search 7:207–208

    Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. US Army Bull no. 36, US Army Corps of Eng., Waterways Experiment Station, Vicksburg, MS, pp 1–50

  • Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Trans Am Geophys Union Part 1:574–586

    Article  Google Scholar 

  • Johnston CT, Cook PG, Frape SK, Plummer LN, Busenberg E, Blackport RJ (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36(1):171–180

    Article  Google Scholar 

  • Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (Version 1): an excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Techniques Methods Rep 4-F3

  • Kasenow M (2006) Aquifer test data: analysis and evaluation. Water Resources, Littleton, CO

  • Katz BG, Bohlke JF, Hornsby HD (2001) Timescales for nitrate contamination of spring waters, northern Florida, USA. Chem Geol 179(1–4):167–186

    Article  Google Scholar 

  • Kelly WR (1997) Heterogeneities in ground-water geochemistry in a sand aquifer beneath an irrigated field. J Hydrol 198(1–4):154–176

    Article  Google Scholar 

  • Kendy E, Zhang YQ, Liu CM, Wang JX, Steenhuis T (2004) Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province, 1949–2000. Hydrol Process 18(12):2289–2302

    Article  Google Scholar 

  • Kennett-Smith A, Cook PG, Walker GR (1994) Factors affecting groundwater recharge following clearing in the south western Murray Basin. J Hydrol 154(1–4):85–105

    Article  Google Scholar 

  • King A, Raiber M, Cox M (2014) Multivariate statistical analysis of hydrochemical data to assess stream-alluvial aquifer connectivity during flood and drought: Cressbrook Creek, southeast Queensland, Australia. Hydrogeol J 22(2):481–500

    Article  Google Scholar 

  • King AC, Raiber M, Cendón DI, Cox ME, Hollins SE (2015) Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia. Hydrol Earth Syst Sci 19:2315–2335

    Article  Google Scholar 

  • Knighton AD, Nanson GC (2000) Waterhole form and process in the anastomosing channel system of Cooper Creek, Australia. Geomorphology 35(1–2):101–117

    Article  Google Scholar 

  • Krul WFJM, Liefrinck FA (1946) Recent groundwater investigations in Netherlands. Monographs on Progress of Research in Holland During the War, no. 5. Elsevier, New York, 78 pp

  • Leaney FW, Allison GB (1986) C-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J Hydrol 88(1–2):129–145

    Article  Google Scholar 

  • Maroulis JC, Nanson GC, Price DM, Pietsch T (2007) Aeolian-fluvial interaction and climate change: source-bordering dune development over the past similar to 100 ka on Cooper Creek, central Australia. Quat Sci Rev 26(3–4):386–404

    Article  Google Scholar 

  • Nanson GC, Price DM, Jones BG, Maroulis JC, Coleman M, Bowman H, Cohen TJ, Pietsch TJ, Larsen JR (2008) Alluvial evidence for major climate and flow regime changes during the Middle and Late Quaternary in eastern central Australia. Geomorphology 101(1–2):109–129

    Article  Google Scholar 

  • Ordens CM, Werner AD, Post VEA, Hutson JL, Simmons CT, Irvine BM (2012) Groundwater recharge to a sedimentary aquifer in the topographically closed Uley South Basin, South Australia. Hydrogeol J 20(1):61–72

    Article  Google Scholar 

  • Owor M, Taylor RG, Tindimugaya C, Mwesigwa D (2009) Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environ Res Lett 4:035009, 6 pp

    Article  Google Scholar 

  • Prickett TA (1965) Type-curve solution to aquifer tests under water-table conditions. Ground Water 3:5–14

    Article  Google Scholar 

  • Raiber MM, Webb JA, Cendón DI, White PA, Jacobsen GE (2015) Environmental isotopes meet 3D geological modelling: conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia. J Hydrol 527:262–280

    Article  Google Scholar 

  • Rasmussen TC, Crawford LA (1997) Identifying and removing barometric pressure effects in confined and unconfined aquifers. Ground Water 35(6):1109–1109

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Phys Chem Chem Phys 1(5):318–333

    Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Spane FA (2002) Considering barometric pressure in groundwater flow investigations. Water Resour Res 38 (6)

  • Stone WJ (1992) Paleohydrologic implications of some deep soilwater chloride profiles, Murray Basin, South-Australia. J Hydrol 132(1–4):201–223

    Article  Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Hussain S (2003) Recharge processes: piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeol J 11(3):387–395

    Article  Google Scholar 

  • Tadros CV, Hughes CE, Crawford J, Hollins SE, Chisari R (2014) Tritium in Australian precipitation: a 50 year record. J Hydrol 513:262–273

    Article  Google Scholar 

  • Taylor CB (1966) Tritium in Southern Hemisphere precipitation 1953–1964. Tellus 18(1):105–131. doi:10.1111/j.2153-3490.1966.tb01449.x

    Article  Google Scholar 

  • Toll NJ, Rasmussen TC (2007) Removal of barometric pressure effects and earth tides from observed water levels. Ground Water 45(1):101–105. doi:10.1111/j.1745-6584.2006.00254.x

    Article  Google Scholar 

  • Tomer MD, Burkart MR (2003) Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. J Environ Qual 32(6):2158–2171

    Article  Google Scholar 

  • Vogel JC (1966) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology. Proceedings of a symposium, Vienna, Austria, 14–18 Nov 1966, pp 355–368

  • Walker GR, Cook PG (1991) The importance of considering diffusion when using carbon-14 to estimate groundwater recharge to an unconfined aquifer. J Hydrol 128(1–4):41–48. http://www.sciencedirect.com/science/article/pii/002216949190130A. Accessed December 2013

  • Weeks EP (2002) The Lisse effect revisited. Ground Water 40(6):652–656

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:491–501

    Article  Google Scholar 

  • Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (H-3 and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240(3–4):187–205

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Queensland Department of Natural Resources and Mines (DNRM) for access to the groundwater database, and in particular Ashley Bleakley and Blake Topp, for their general input and field support. The authors also thank David Frizzell from Toowoomba City Council for providing surface-water levels from Cressbrook Dam, and laboratory staff at the Queensland University of Technology, including Shane Russell and James Brady, for assistance with chemical analysis. The authors also acknowledge the Australian Institute of Nuclear Science and Engineering (AINSE) for the research grant that funded 3H analysis, and Robert Chisari for conducting the analysis of 3H. Olga Barron and Warwick McDonald of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) are also thanked for their comments on an earlier version of the manuscript. Two anonymous reviewers and editor Jean-Michel Lemieux are thanked for their comments, which helped to improve the manuscript. Funding by the National Centre for Groundwater Research and Training (NCGRT) is gratefully acknowledged.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam C. King.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A.C., Raiber, M., Cox, M.E. et al. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia). Hydrogeol J 25, 1759–1777 (2017). https://doi.org/10.1007/s10040-017-1565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1565-5

Keywords

Navigation