Skip to main content

Advertisement

Log in

Elements of complexity in subsurface modeling, exemplified with three case studies

Eléments de complexité dans la modélisation du sous-sol, illustrés par trois études de cas

Elementos de complejidad en el modelado del subsuelo, ejemplificados con tres estudios de caso

用三个研究实例说明地表以下建模复杂性元素

Elementos de complexidade na modelagem subsuperficial, exemplificado com três estudos de caso

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this report, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: (1) modeling approach, (2) description of process, and (3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil-vapor-extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.

Résumé

Il y a des éléments de complexité à prendre en considération lorsqu’on applique des modèles d’écoulements et de transport souterrains dans le cadre d’analyses environnementales. Les modélisateurs recherchent un équilibre entre les bénéfices et les coûts de la modélisation selon le spectre de la complexité, prenant en considération les caractéristiques de modèles plus simples (c’est-à-dire moins coûteux, exécution plus rapide, plus faciles à expliquer, moins mécanistes) et des caractéristiques des modèles plus complexes (c’est-à-dire plus coûteux, exécution plus lente, plus difficiles à expliquer, plus mécanistes et techniquement fiables). Dans cet article, la complexité en modélisation est étudiée afin d’atteindre cet équilibre. La discussion de la complexité en modélisation s’articule autour de trois principaux éléments : (1) approche de modélisation, (2) description des processus, et (3) description des hétérogénéités. Trois exemples sont utilisés pour étudier ces éléments de complexité. Deux de ces exemples utilisent des simulations résultant d’un modèle complexe afin de développer des modèles plus simples pour une utilisation efficace dans l’application du modèle. Le premier exemple est conçu pour évaluer la performance d’une remédiation par extraction de vapeur du sol pour la protection des eaux souterraines. Le deuxième exemple examine l’importance de différents types de simulation de réactions géochimiques pour le stockage du CO2, en sélectionnant des simplifications appropriées pour évaluer des scénarios de stockage. Dans le troisième exemple, l’histoire de la modélisation pour un site pollué à l’uranium démontre que les estimations des paramètres conservatifs étaient des substitutifs inadéquats pour des processus complexes et critiques et la sélection d’une complexité de modèle plus adaptée est discutée pour cette application. Ces trois exemples mettent en évidence comment la prise en considération de la complexité est essentielle pour réaliser des modèles scientifiquement fiables qui atteignent un équilibre entre simplification et complexité du modèle.

Resumen

Hay elementos de complejidad a considerar cuando se aplican modelos de flujo y transporte en el subsuelo para apoyar los análisis ambientales. Los modelistas equilibran los beneficios y costos del modelado a lo largo del espectro de complejidad, teniendo en cuenta los atributos de los modelos más simples (por ejemplo, menor costo, ejecución más rápida, más fácil de explicar, menos mecanicista) y los atributos de modelos más complejos (costo, ejecución más lenta, más difícil de explicar, más mecanicista y técnicamente defendible). En este trabajo, se examina la complejidad del modelado con respecto a considerar este balance. La discusión de la complejidad de modelado se organiza en tres elementos principales: (1) enfoque del modelado, (2) descripción del proceso y (3) descripción de la heterogeneidad. Se utilizan tres ejemplos para examinar estos elementos de complejidad. Dos de los ejemplos utilizan simulaciones generadas a partir de un modelo complejo para desarrollar modelos más simples para un uso eficiente en aplicaciones de modelos. El primer ejemplo está diseñado para apoyar la evaluación del rendimiento de la remediación para la extracción de vapores del suelo en términos de protección del agua subterránea. El segundo ejemplo investiga la importancia de simular diferentes categorías de reacciones geoquímicas para el secuestro de carbono y seleccionar las simplificaciones apropiadas para su uso en la evaluación de escenarios de secuestro. En el tercer ejemplo, el historial de modelado de un sitio contaminado con uranio demuestra que las estimaciones de parámetros conservadores eran substitutos inadecuados para procesos críticos complejos y hay una discusión sobre la selección de la complejidad de modelo más apropiada para esta aplicación. Los tres ejemplos ponen de relieve cómo las consideraciones de complejidad son esenciales para crear modelos científicamente defendibles que logren un balance entre la simplificación y la complejidad del modelo.

摘要

应用地表以下水流和运移模型支持环境分析时,有一些复杂性元素需要考虑。建模者在复杂性范围内平衡着建模的效益和成本,要考虑较简单模型的属性(较低成本、较快的实施、易于说明及不那么机械)及较复杂模型的属性(较高的成本、较慢的实施、很难说明及技术上可防御)。在本文中,考虑到这个平衡问题,检查了建模的复杂性。建模复杂性的论述被归纳为三个主要元素:(1)建模方法,(2)过程描述,(3)异质性描述。利用三个例子检查了复杂性元素。为了在模型应用中有效利用模型,从一个复杂模型开发出较简单的模型,其中两个例子使用了所产生的模拟结果。第一个例子被设计为支持地下水保护方面土壤气体萃取修复性能评价。第二个例子调查了针对碳隔离模拟不同类别地球化学反应及选择在隔离方案中使用适当简单化的重要性。在第三个例子中,一个铀污染场地的建模历史说明,保守参数估算不能适当地值代替复杂的、关键过程,应用这个模型在更恰当模型复杂性的选择上有争论。所有三个例子强调了在科学上创建防御性模型取得模型简单化和复杂性之间平衡上,复杂性考量是多么的重要。

Resumo

Existem elementos de complexidade a se considerar quando se aplica modelos de transporte e fluxo de subsuperficie para auxiliar análises ambientais. Os modeladores ponderam os benefícios e custos da modelagem ao longo do espectro da complexidade, levando em consideração os atributos de modelos mais simples (p.ex. menor custo, execução mais rápida, mais fácil de explicar, menos mecanicista) e os atributos de modelos mais complexos (maior custo, execução mais lenta, mais difícil de explicar, mais mecanicista e tecnicamente defensável). Nesse estudo, a complexidade da modelagem é examinada considerando esse balanço. A discussão da complexidade da modelagem está organizada em três elementos principais: (1) abordagem da modelagem, (2) descrição do processo, e (3) descrição da heterogeneidade. Três exemplos são utilizados para examinar esses elementos de complexidade. Dois dos exemplos utilizam simulações geradas através de um modelo complexo para desenvolver modelos mais simples, para o uso eficiente em aplicações de modelos. O primeiro exemplo é projetado para auxiliar a avaliação do desempenho da remediação por extração de vapor do solo em termos de proteção das águas subterrâneas. O segundo exemplo investiga a importância de simular diferentes categorias de reações geoquímicas para sequestro de carbono e selecionar as simplificações apropriadas para uso na avaliação de cenários de sequestro. No terceiro exemplo, o histórico de modelagem de uma área contaminada com urânio demonstra que as estimativas de parâmetros conservadores foram substitutos inadequados para processos críticos e complexos e há uma discussão sobre a seleção de um modelo com complexidade mais apropriada para essa aplicação. Todos os três exemplos destacam como considerações de complexidade são essenciais para criar modelos cientificamente defensáveis que alcancem um equilíbrio entre simplificação e complexidade do modelo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ANL (1993) Manual for implementing residual radioactive materials guidelines using RESRAD, version 5.0. ANL/EAD/LD-2, Environmental Assessment Division, Argonne National Laboratory, Argonne, IL

  • Ataie-Ashtiani B, Hassanizadeh SM, Celia MA (2002) Effects of heterogeneities on capillary pressure–saturation–relative permeability relationships. J Contam Hydrol 56:175–192. doi:10.1016/S0169-7722(01)00208-X

    Article  Google Scholar 

  • Bacon DH, Dai Z, Zheng L (2014) Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer. Energy Procedia 63:4684–4704. doi:10.1016/j.egypro.2014.11.502

    Article  Google Scholar 

  • Beck PH, Mann B (2012) Fate and transport modeling for monitored natural attenuation projects: what should be considered to maximize the value in decision making? In: Oswald SE, Kolditz O, Attinger S (eds) Models: repositories of knowledge. IAHS Publication, vol. 35, IAHS, Wallingford, UK, pp 149–156

  • Bethke CM, Brady PV (2000) How the Kd approach undermines cleanup ground water cleanup. Ground Water 38(3):435–443

    Article  Google Scholar 

  • Beven KJ (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv Water Resour 16:41–51

    Article  Google Scholar 

  • Beven KJ, Freer L (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29

    Article  Google Scholar 

  • Bhattacharjee S, Ryan JN, Elimelech M (2002) Virus transport in physically and geochemically heterogeneous subsurface porous media. J Contam Hydrol 57:161–187

    Article  Google Scholar 

  • BHI (2002) Protection of 300 area groundwater from uranium-contaminated soils at remediation sites. BHI-01667, Rev. 0, Bechtel Hanford, Richland, WA

  • Blouin M, Martel R, Gloaguen E (2013) Accounting for aquifer heterogeneity from geological data to management tools. Ground Water 51:421–431

    Google Scholar 

  • Bower KM, Gable CW, Zyvoloski GA (2005) Grid resolution study of ground water flow and transport. Ground Water 43(1):122–132

    Article  Google Scholar 

  • Bunn AL, Wellman DM, Deeb RA, Hawley EL, Truex MJ, Peterson M, Freshley MD, Pierce EM, McCord J, Young MH, Gilmore TJ, Miller R, Miracle AL, Kaback D, Eddy-Dilek C, Rossabi J, Lee MH, Bush RP, Beam P, Chamberlain GM, Marble J, Whitehurst L, Gerdes KD, Collazo Y (2012) Scientific opportunities for monitoring at environmental remediation sites (SOMERS): integrated systems-based approaches to monitoring. PNNL-21379, Pacific Northwest National Laboratory, Richland, WA

  • Burr DT, Sudicky EA, Naff RL (1994) Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: mean displacement, plume spreading and uncertainty. Water Resour Res 30:791–815

    Article  Google Scholar 

  • Cantrell KJ, Brown CF (2014) Source term modeling for evaluating the potential impacts to groundwater of fluids escaping from a depleted oil reservoir used for carbon sequestration. Int J Greenhouse Gas Control 27:139–145. doi:10.1016/j.ijggc.2014.05.009

    Article  Google Scholar 

  • Carroll KC, Oostrom M, Truex MJ, Rohay VJ, Brusseau ML (2012) Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality. J Contam Hydrol 128:71–82. doi:10.1016/j.jconhyd.2011.10.003

    Article  Google Scholar 

  • Carroll SA, Keating E, Mansoor K, Dai Z, Sun Y, Trainor-Guitton W, Brown C, Bacon D (2014) Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs. Int J Greenhouse Gas Control 29:153–168. doi:10.1016/j.ijggc.2014.07.007

    Article  Google Scholar 

  • Clement TP (2011) Complexities in hindcasting models: when should we say enough is enough? Ground Water 49(5):620–629. doi:10.1111/j.1745-6584.2010.00765.x

    Article  Google Scholar 

  • Comunian A, De Micheli L, Lazzati C, Felletti F, Giacobbo F, Giudicii M, Bersezio R (2016) Hierarchical simulation of aquifer heterogeneity: implications of different simulation settings on solute-transport modeling. Hydrogeol J 24(2):319–334

    Article  Google Scholar 

  • Doherty J (2011) Modeling: picture perfect or abstract art. Ground Water 49(4):455–456

    Article  Google Scholar 

  • Doherty JE, Hunt RJ (2010) Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. US Geol Surv Sci Invest Rep 2010-5169

  • Englehardt I, De Aguinaga JG, Mikat H, Schuth C, Liedl R (2014) Complexity vs. simplicity: groundwater model ranking using information criteria. Ground Water 52(4):573–583. doi:10.1111/gwat.12080

    Article  Google Scholar 

  • EPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. OSWER Directive 92000.4-17P, US EPA, Office of Solid Waste and Emergency Response, Washington, DC

  • EPA (2011) Groundwater road map: recommended process for restoring contaminated groundwater at superfund sites. OSWER 9283.1-34, US EPA, Washington, DC

  • EPA (2014) Groundwater remedy completion strategy. OSWER 9200.2-144, US EPA, Office of Solid Waste and Emergency Response, Washington, DC

  • EPA (2015) Use of monitored natural attenuation for inorganic contaminants in groundwater at superfund sites. OSWER Directive 9283.1-36, US EPA, Office of Solid Waste and Emergency Response, Washington, DC

  • Freedman VL, Chen X, Finsterle SA, Freshley MD, Gorton I, Gosink LJ, Keating E, Lansing C, Moeglein WAM, Murray CJ, Pau GSH, Porter EA, Purohit S, Rockhold ML, Schuchardt KL, Sivaramakrishnan C, Vesselinov VV, Waichler SR (2014) A high-performance workflow system for subsurface simulation. Environ Model Softw 55:176–189. doi:10.1016/j.envsoft.2014.01.030

    Article  Google Scholar 

  • Gerber MS (1992) Past practices technical characterization study: 300 Area—Hanford Site. WHC- MR-0388, Westinghouse Hanford, Richland, WA

  • Greskowiak J, Hay MB, Prommer H, Liu C, Post VEA, Ma R, Davis JA, Zheng C, Zachara JM (2011) Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: physical versus chemical nonequilibrium models. Water Resour Res 47, W08501. doi:10.1029/2009WR008819

    Article  Google Scholar 

  • Guswa AJ, Freyberg DL (2002) On the need for a mass-transfer model to describe solute spreading in geologic environments with low-permeability lenses. Water Resour Res 38(8). doi:10.1029/2001WR000528

  • Hajime Y, Doughty C (2011) Investigation of gridding effects for numerical simulations of CO2 geologic sequestration. Int J Greenhouse Gas Control 5(4):975–985

    Article  Google Scholar 

  • Hammond GE, Lichtner PC (2010) Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing. Water Resour Res 46(9), W09527. doi:10.1029/2009WR008819

    Article  Google Scholar 

  • Hammond GE, Lichtner PC, Rockhold ML (2011) Stochastic simulation of uranium migration at the Hanford 300 Area. J Contam Hydrol 120–121:115–28. doi:10.1016/j.jconhyd.2010.04.005

    Article  Google Scholar 

  • Hill M (2006) The practical use of simplicity in developing ground water models. Ground Water 44(6):775–781. doi:10.1111/j.1745-6584.2006.00227.x

    Article  Google Scholar 

  • Horner C, Engelmann F, Nuetzmann G (2009) Model based verification and prognosis of acidification and sulphate releasing processes downstream of a former sewage field in Berlin (Germany). J Contam Hydrol 106(1–2):83–98

    Article  Google Scholar 

  • Hunt RJ, Zheng C (1999) Debating complexity in modeling. EOS Trans Am Geophys Union 80(3):29

    Article  Google Scholar 

  • Hunt RJ, Doherty J, Tonkin MJ (2007) Are models too simple? Arguments for increased parameterization. Ground Water 45(3):254–262. doi:10.1111/j.1745-6584.2007.00316.x

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modeling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17:1901–1911. doi:10.1007/s10040-009-0495-2

    Article  Google Scholar 

  • Keating EH, Harp DH, Dai Z, Pawar RJ (2016) Reduced order models for assessing CO2 impacts in shallow unconfined aquifers. Int J Greenhouse Gas Control 46:187–196

    Article  Google Scholar 

  • Krause MH, Benson SM (2015) Accurate determination of characteristic relative permeability curves. Adv Water Resour 83:376–388

    Article  Google Scholar 

  • Last GV, Murray CJ, Bott YJ, Brown CF (2014) Threshold values for identification of contamination predicted by reduced-order models. Energy Procedia 63:3589–3597. doi:10.1016/j.egypro.2014.11.389

    Article  Google Scholar 

  • Lindgren, RJ (2006) Diffuse-flow conceptualization and simulation of the Edwards Aquifer, San Antonio Region, Texas. US Geological Surv Sci Invest Rep 2006-5319, 48 pp

  • Liu C, Zachara JM, Qafoku OS, McKinley JP, Heald SM, Wang Z (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochim Cosmochim Acta 68:4519–4537

    Article  Google Scholar 

  • Liu C, Zachara JM, Qafoku NP, Wang Z (2008) Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour Res 44, W08413. doi:10.1029/2007WR006478

    Google Scholar 

  • Liu C, Shi S, Zachara JM (2009) Kinetics of uranium (VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ Sci Technol 43(17):6560–6566

    Article  Google Scholar 

  • Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M (2010) A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res 46, W05509. doi:10.1029/2009WR008168

    Article  Google Scholar 

  • Meyer PD, Ye M, Rockhold NL, Neuman SP, Cantrell KJ (2007) Combined estimation of hydrogeologic conceptual model, parameter, and scenario uncertainty with application to uranium transport at the Hanford Site 300 Area. NUREG/CR-6940, PNNL-16396, US Nuclear Regulatory Commission, Washington, DC

  • Murray CJ, Zachara JM, McKinley JP, Ward A, Bott Y-J, Draper K, Moore D (2012) Establishing a geochemical heterogeneity model for a contaminated vadose zone–aquifer system. J Contam Hydrol. doi:10.1016/j.jconhyd.2012.02.003

    Google Scholar 

  • NETL (2016?) National risk assessment partnership. https://edx.netl.doe.gov/nrap/. Accessed 5 Jan 2017

  • Neuman SP (2002) Accounting for conceptual model uncertainty via maximum likelihood Bayesian model averaging. In: Calibration and reliability in groundwater modelling: a few steps closer to reality. Proceeding of ModelCARE 2002. Prague, Czech Republic, June 2002. IAHS Publication 277, IAHS, Wallingford, UK

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREGICR-6805, US Nuclear Regulatory Commission, Washington, DC

  • Newell DL, Kaszuba JP, Viswanathan HS (2008) Significance of carbonate buffers in natural waters reacting with supercritical CO2: implications for monitoring, measuring and verification (MMV) of geologic carbon sequestration. Geophys Res Lett 35(23), L23403

    Article  Google Scholar 

  • NRC (2012) Nuclear regulatory commission’s F-Tank farm technical evaluation report’s recommendations: Department of Energy’s activity summary matrix. SRR-CWDA-2012-00045, Rev. 1, Savannah River Remediation LLC Closure and Waste Disposal Authority, Aiken, SC

  • Oostrom M, Rockhold ML, Thorne PD, Last GV, Truex MJ, Rohay VJ (2007) Carbon tetrachloride flow and transport in the subsurface of the 216-Z-9 trench at the Hanford Site: multifluid flow modeling and conceptual model update. Vadose Zone J 6(4):971–984

    Article  Google Scholar 

  • Oostrom M, Wietsma TW, Dane JH, Truex MJ, Ward AL (2009) Desiccation of unsaturated porous media: intermediate-scale experiments and numerical simulation. Vadose Zone J 8:643–650

    Article  Google Scholar 

  • Oostrom M, Truex MJ, Tartakovsky GD, Wietsma TW (2010) Three-dimensional simulation of volatile organic compound mass flux from the vadose zone to groundwater. Ground Water Monit Remidiat 30(3):45–56. doi:10.1111/j1745-6592.2010.001285.x

    Article  Google Scholar 

  • Oostrom M, Wietsma TW, Strickland CE, Freedman VL, Truex MJ (2012) Sensor and numerical simulator evaluation for porous medium desiccation and rewetting at the intermediate laboratory scale. Vadose Zone J 11(1), 0089. doi:10.2136/vzj2011.0089

    Article  Google Scholar 

  • Oostrom M, Truex MJ, Rice AK, Johnson CD, Carroll KC, Becker DJ, Simon MA (2014) Estimating the impact of vadose zone sources on groundwater to support performance assessment of soil vapor extraction. Ground Water Monit Remidiat 34(2):71–84. doi:10.1111/gwmr.12050

    Google Scholar 

  • Oostrom M, Truex MJ, Last GV, Strickland CE, Tartakovsky GD (2016) Evaluation of deep vadose zone contaminant flux into groundwater: approach and case study. J Contam Hydrol 189:27–43. doi:10.1016/j.jconhyd.2016.03.002

    Article  Google Scholar 

  • Pachepsky YA, Guber AK, Van Genuchten MT, Nicholson TJ, Cady RE, Simunek J, Schaap MG (2006) Model abstraction techniques for soil-water flow and transport. NUREG/CR-6884, US Nuclear Regulatory Commission, Washington, DC

  • Pawar RJ, Bromhal GS, Chu SP, Dilmore RM, Oldenburg CM, Stauffer PH, Zhang YQ, Guthrie GD (2016) The National Risk Assessment Partnership’s integrated assessment model for carbon storage: a tool to support decision making amidst uncertainty. Int J Greenhouse Gas Control 52:175–189

    Article  Google Scholar 

  • Peterson RE (ed) (2005) Contaminants of potential concern in the 300-FF-5 operable unit: expanded annual groundwater report for FY 2004, PNNL-15127, Pacific Northwest National Laboratory, Richland, WA

  • Reardon EJ (1981) Kd’s: can they be used to describe reversible ion sorption reactions in contaminant migration? Ground Water 19(3):279–286

    Article  Google Scholar 

  • Rockhold ML, Bacon DH, Freedman VL, Parker KR, Waichler SR, Williams MD (2013) System-scale model of aquifer, vadose zone, and river interactions for the Hanford 300 area: application to uranium reactive transport. PNNL-22886, Pacific Northwest National Laboratory, Richland, WA

  • Ronanye MJ, Gorelick SM, Zheng C (2010) Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer. Water Resour Res 46, W10519. doi:10.1029/2010WR009348

    Google Scholar 

  • Simmons CT, Hunt RJ (2012) Updating the debate on model complexity. GSA Today 22(8):28–29. doi:10.1130/GSATG150GW.1

    Article  Google Scholar 

  • Stoliker DL, Kent DB, Zachara JM (2011) Quantifying differences in the impact of variable chemistry on equilibrium uranium (VI) adsorption properties of aquifer sediments. Environ Sci Technol 45:8733–8740

    Article  Google Scholar 

  • Tonkin MJ, Doherty J (2005) A hybrid regularized inversion methodology for highly parameterized environmental models. Water Resour Res 41, W10412. doi:10.1029/2005WR003995

    Article  Google Scholar 

  • Tonkin M, Doherty J (2009) Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resour Res 45:W00B10. doi:10.1029/2007WR006678

    Article  Google Scholar 

  • Toran L, Bryant S, Saunders J, Wheeler MF (1998) A two-tiered approach to reactive transport: application to Sr mobility under variable pH. Ground Water 36(3):404–408

    Article  Google Scholar 

  • Truex MJ, Oostrom M, Brusseau ML (2009) Estimating persistent mass flux of volatile contaminants from the vadose zone to groundwater. Ground Water Monit Remidiat 29(2):63–72

    Article  Google Scholar 

  • Truex MJ, Carroll KC, Oostrom M (2012) Assessing soil vapor extraction remediation performance and closure: a review. In: Proceedings Waste Management Symposia 2012. Available at www.wmsym.org. Accessed March 2017

  • Truex MJ, Becker DJ, Simon MA, Oostrom M, Rice AK, Johnson DC (2013) Soil vapor extraction system optimization, transition, and closure guidance. PNNL-21843, Pacific Northwest National Laboratory, Richland, WA

  • Vrionis HA, Anderson RT, Ortiz-Bernad I, O’Neill KR, Resch CT, Peacock AD, White DC, Lowe M, Lovley DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    Article  Google Scholar 

  • Waichler SR, Yabusaki SB (2005) Flow and transport in the Hanford 300 Area vadose zone-aquifer-river system, PNNL-15125, Pacific Northwest National Laboratory, Richland, WA

  • Williams MD, Rockhold ML, Thorne PD, Chen Y (2008) Three-dimensional groundwater models of the 300 area at the Hanford Site, Washington State. PNNL-17708, Pacific Northwest National Laboratory, Richland, WA

  • Yabusaki SB, Fang Y, Williams KH, Murray CJ, Ward AL, Dayvault R, Waichler SR, Newcomer DR, Spane FA, Long PE (2011) Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J Contam Hydrol 126(3–4):271–290. doi:10.1016/j.jconhyd.2011.09.002

    Article  Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27(12):3075–3094

    Article  Google Scholar 

  • Zachara J, Brown CF, Liu C, Kelly S, Christensen J, McKinley J, Davis JA, Serne RJ, Dresel E, Um W (2007) A site-wide perspective on uranium geochemistry at the Hanford Site. PNNL-17031, Pacific Northwest National Laboratory, Richland, WA

  • Zachara JM, Freshley MD, Last GV, Peterson RE, Bjornstad BN (2012) Updated conceptual model for the 300 Area uranium groundwater plume. PNNL-22048, RPT-DVZ-AFRI-007, Pacific Northwest National Laboratory, Richland, WA

  • Zheng LG, Spycher N, Birkholzer J, Xu TF, Apps J, Kharaka Y (2013) On modeling the potential impacts of CO2 sequestration on shallow groundwater: transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int J Greenhouse Gas Control 14:113–127. doi:10.1016/J.Ijggc.2013.01.014

    Article  Google Scholar 

  • Zyvoloski GA, Vesselinov VV (2006) An investigation of numerical grid effects in parameter estimation. Ground Water 44(6):814–825. doi:10.1111/j.1745-6584.2006.00203.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract DE-AC05-76RL01830. Development of the reduced-order model for carbon sequestration was completed as part of the National Risk Assessment Partnership (NRAP) project, funded by US Department of Energy’s (DOE’s) Office of Fossil Energy. The authors would also like to acknowledge and thank the editor and reviewers for their thoughtful reviews, which helped to improve and clarify the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky L. Freedman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freedman, V.L., Truex, M.J., Rockhold, M.L. et al. Elements of complexity in subsurface modeling, exemplified with three case studies. Hydrogeol J 25, 1853–1870 (2017). https://doi.org/10.1007/s10040-017-1564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1564-6

Keywords

Navigation