Skip to main content

Advertisement

Log in

Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India

Evaluation de la performance d’un système de recharge artificielle à gradient inverse dans des aquifères basaltiques du Maharashtra, Inde

Evaluación del rendimiento de un sistema de recarga artificial de gradiente inverso en acuíferos de basalto de Maharashtra, India

印度马哈拉施特拉邦玄武岩含水层反向坡度人工补给系统的性能评估

Avaliação do desempenho de um sistema de recarga artificial de gradiente reverso em aquíferos basálticos de Maharashtra, Índia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65–82 m3/day, while a minimum increase in yield of 15–30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.

Résumé

La pénurie d’eau potable est courante, en contexte basaltique, dans les parties rurales du centre de l’Inde. La plupart de la population rurale dépend des ressources en eau souterraine situées dans la zone fracturée et altérée des aquifères basaltiques. Des prélèvements inconsidérés sur une longue période ont causé une baisse alarmante des niveaux piézométriques aussi bien au cours des périodes pré- que post-mousson. Les réserves de l’aquifère ne sont pas reconstituées par les précipitations en conditions naturelles. Pour remédier à cette situation, un système de recharge artificielle innovant, appelé système de recharge à gradient inverse (RGRS) a été mis en œuvre dans sept villages du district de Wardha au Maharashtra. L’étude décrite ici présente une analyse comparative des systèmes de recharge construits en 2012 à l’aval des emplacements des puits de grand diamètre creusés à la main dans ces sept villages. L’analyse comparée suivant le projet révèle que l’aire d’influence (AOI) du système de recharge des eaux souterraines, au sein de laquelle sont observées des augmentations des niveaux piézométriques et du débit, est directement reliée à la porosité efficace, à l’épaisseur de la zone fracturée et altérée, à la porosité et à la transmissivité de l’aquifère, montrant de forts coefficients de corrélation respectivement de 0.92, 0.88, 0.85 et 0.83. L’étude indique que le RGRS est plus efficace dans le basalte vésiculé altéré et fracturé, qui montre une augmentation maximale du débit des puits de 65–82 m3/jour, alors que l’augmentation du débit est minimale (15–30 m3/jour) dans le basalte vésiculé altéré. L’analyse comparée identifie donc les facteurs de contrôle qui facilitent la recharge des eaux souterraines au moyen du RGRS proposé. Après la mise en œuvre de ces projets, la disponibilité en eau souterraine dans ces villages a augmenté significativement, résolvant leurs problèmes d’eau potable.

Resumen

Es común la escasez de agua potable en las zonas rurales de la India central en terrenos basálticos. La mayor parte de la población rural depende de fuentes de agua subterránea ubicadas en la zona fracturada y meteorizada de los acuíferos basálticos. La extracción indiscriminada a largo plazo causó una alarmante tasa de agotamiento de los niveles del agua subterránea tanto en los períodos previos como en los posteriores al monzón. El acuífero no se repone a través de la precipitación en condiciones naturales. Para superar esta situación, se implementó un innovador sistema de recarga artificial, denominado sistema de recarga de gradiente inverso (RGRS), en siete aldeas del distrito de Wardha, en Maharashtra. El estudio descrito aquí presenta un análisis comparativo de los sistemas de recarga construidos en el año 2012 aguas abajo de las ubicaciones de pozos excavados en estas siete aldeas. El análisis comparativo posterior al proyecto revela que el área de influencia (AOI) del sistema de recarga del agua subterránea, en el que se observan incrementos en los niveles de agua subterránea y en el rendimiento, están directamente relacionados al rendimiento específico, el espesor de la zona fracturada y meteorizada, y transmisividad del acuífero, mostrando altos coeficientes de correlación de 0.92, 0.88, 0.85 y 0.83, respectivamente. El estudio indica que el RGRS es más efectivo en el basalto vesicular y fracturado, registrando un aumento máximo en el rendimiento del pozo de 65–82 m3/día, mientras que se observó en el basalto vesicular un incremento mínimo de rendimiento de 15–30 m3/día. El análisis comparativo identifica así los factores de control que facilitan la recarga de agua subterránea a través del RGRS propuesto. La disponibilidad de agua subterránea en estos pueblos aumentó después de la implementación de estos proyectos,

摘要

印度中部农村玄武岩地区饮用水匮乏非常普遍。大多数农村人口依赖于玄武岩含水层断裂和风化带的地下水源。长期任意开采导致季风前后时期地下水位频频告急。在自然条件下单单靠降水不能满足含水层补给。为了解决这种情况,在马哈拉施特拉邦Wardha地区的七个村庄,采用了一种创新补给系统,这种系统被称为反向坡度补给系统。在此所述的研究对比分析了在这七个村庄大口井下游建于2012年的补给系统。项目之后的对比分析揭示,地下水补给系统之内,观测到地下水位的上升及出水量增加,地下水补给系统的影响面积直接与单位出水量、风化带和断裂带的厚度、孔隙度及含水层的透水性相关,分别呈现出很高的对比系数,即0.92、0.88、0.85和0.83。研究表明,反向坡度补给系统在多孔状风化和断裂带中最有效,井出水量最大增加65-82 m3/天,而在风化的多孔状玄武岩中观测到,出水量最少增加15-30 m3/天。因此对比研究确认了通过提出的反向坡度补给系统促进地下水补给的控制因素。这些项目实施后,这些村庄的地下水可用量显著增加,解决了人们的吃水问题。

Resumo

A escassez de água potável nas zonas rurais da Índia central em terrenos basálticos é comum. A maior parte da população rural depende de fontes de águas subterrâneas localizadas na zona fraturada e alterada dos aquíferos basálticos. A retirada indiscriminada a longo prazo causou uma taxa alarmante de rebaixamento dos níveis das águas subterrâneas nos períodos pré e pós-monção. O aquífero não é reabastecido através de precipitação em condições naturais. Para superar esta situação, foi implementado um inovador sistema de recarga artificial, denominado sistema de recarga de gradiente reverso (SRGR), em sete aldeias do distrito de Wardha, em Maharashtra. O estudo aqui descrito apresenta uma análise comparativa dos sistemas de recarga construídos no ano de 2012 a jusante dos locais dos poços escavados nestas sete aldeias. A análise comparativa pós-projeto revela que a área de influência (AOI) do sistema de recarga das águas subterrâneas, na qual se observam aumento da capacidade e dos níveis das águas subterrâneas, está diretamente relacionada com a capacidade específica, a espessura da zona alterada e fraturada, porosidade e transmissividade do aquífero, mostrando altos coeficientes de correlação de 0.92, 0.88, 0.85 e 0.83, respectivamente. O estudo indica que o SRGR é mais efetivo em basaltos vesiculares alterados e fraturados, registrando um aumento máximo no rendimento de 65–82 m3/dia, enquanto um aumento mínimo na produtividade de 15–30 m3/dia foi observado em basalto vesicular alterado. A análise comparativa identifica assim os fatores de controle que facilitam a recarga das águas subterrâneas através do SRGR proposto. Após a implementação desses projetos, a disponibilidade das águas subterrâneas nessas aldeias aumentou significativamente, resolvendo seus problemas de água potável.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aguilar D (2008) Groundwater reform in India an equity and sustainability dilemma. Tex Int Law J 46:623–624

    Google Scholar 

  • Aguilar JB, Cook PG (2012) Transient infiltration from ephemeral streams: a field experiment at the reach. Water Resour Res J 48(11):W11518. doi:10.1029/2012WR012009

    Google Scholar 

  • Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res J 19(6):1558–1564

    Article  Google Scholar 

  • Bhuiyan C (2015) Hydrological characterization of geological lineaments: a case study from the Aravalli terrain, India. Hydrogeol J 23(4):673–686

    Article  Google Scholar 

  • Bhusari V, Katpatal YB, Kundal P (2016) An innovative artificial recharge system to enhance groundwater storage in basaltic terrain, example from Maharashtra, India. Hydrogeol J 24(5):1273–1286

    Article  Google Scholar 

  • BIS (2008) Artificial recharge to groundwater guidelines. IS 15792, ICS07:60, Bureau of Indian Standards, New Delhi, 30 pp

  • Butler JJ, Garnet EJ, Healy JM (2003) Analysis of slug test in formations of high hydraulic conductivity. Groundwater J 41(5):620–630

    Article  Google Scholar 

  • CGWB (1986) Manual on analysis of pumping test data of large diameter wells. Technical Series M. Government of India, Ministry of Water Resources, Faridabad, India, pp 28–38

  • CGWB (2000) Master plan for artificial recharge to ground water in Maharashtra. Central Ground Water Board, Central Region Water Resources, New Delhi, 76 pp

    Google Scholar 

  • CGWB (2007) A manual on artificial recharge of groundwater. Central Groundwater Board, Government of India, New Delhi, pp 159–161

    Google Scholar 

  • Cortes FA, Guillen RC (2002) State of the art of artificial recharge through well injection in Mexico, management of aquifer recharge and subsurface storage. IAH Seminar, Wageningen, The Netherlands, 18–19 December 2002, pp 44–53

  • CWC (1988) Water resources of India. New Delhi Pub. no. 30 (88), Central Water Commission, New Delhi, pp 13–20

  • De Vries J, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17

    Article  Google Scholar 

  • Deolalnkar SB (1980) Deccan Basalt of Maharashtra, India: their potential as aquifers. Groundwater 18(5):434–437

  • Dillon PJ (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316

    Article  Google Scholar 

  • Dillon P, Toze S, Page D, Vanderzalm J, Bekele E, Sidhu J, Rinck-Pfeiffer S (2010) Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci Technol 62(10):2338–2345

    Article  Google Scholar 

  • Dunkerley DL (2008) Bank permeability in an Australian ephemeral dry-land stream: variation with stage resulting from mud deposition and sediment clogging. Earth Surf Process Landf 33(2):226–243. doi:10.1002/esp.1539

    Article  Google Scholar 

  • Fashae OA, Tijani MN, Talabi AO, Adedeji OI (2014) Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci J 4:19–38

    Article  Google Scholar 

  • Gokhale R, Sohoni M (2015) Data driven behavioral characterization of dry-season groundwater level variation in Maharashtra, India. Earth Syst Sci J 124(4):767–781

    Article  Google Scholar 

  • Goyal SK (2013) Vulnerable and sustainability of groundwater resources in India. Adv Earth Sci Eng J 2(1):69–74

    Google Scholar 

  • GSDA (Groundwater Surveys and Development Agency) (2010) Report on the dynamic groundwater resources of Maharashtra, India (2008–2009). Govt. of Maharashtra and Central Groundwater Board, Central Region of Govt. of India, New Delhi, 45 pp

  • GSI (2008) Geology of Maharashtra. Geological Survey of India. http://www.portal.gsi.gov.in. Accessed October 2015

  • Hendrickx JMH, Khan AS, Bannink MH, Birch D, Kidd C (1991) Numerical analysis of groundwater recharge through stony soils using limited data. Hydrol J 127(1–4):173–192

    Article  Google Scholar 

  • Ishida ST, Shuhei TY, Masauki I (2011) Sustainable use of groundwater with underground dam. JARQ 45(1):51–61

    Article  Google Scholar 

  • Jamali AI, Olofsson B, Mortberg U, Shafique M (2014) A spatial multi-criteria analysis approach for locating suitable sites for construction of subsurface dams in northern Pakistan. Water Resour Manag J 28:5157–5174

    Article  Google Scholar 

  • Kambale JB, Sarangi A, Singh DK, Singh AK (2009) Performance evaluation of filtration unit of recharge groundwater shaft: laboratory study. Curr Sci 96(4):471–474

    Google Scholar 

  • Karimov A, Mavlonov A, Miryusupov F, Gracheva I, Borisov V, Abdurahmonov B (2012) Modeling policy alternatives toward managed aquifer recharge in the Fergana Valley, Central Asia. Water Int 37(4):380–394

    Article  Google Scholar 

  • Katpatal YB, Dube YA (2010) Comparative overlay analysis through analytical hierarchical process to delineate groundwater potential zones using satellite data. Earth Sci Eng J 3(5):638–653

    Google Scholar 

  • Kulkarni H, Vijay Shankar PS, Krishnan S (2009) Synopsis of groundwater resources in India: status, challenges and a new framework for responses. Report submitted to the Planning Commission, Government of India, for the mid-term appraisal of the 11th Plan, ACWA/PC/Rep-1, GOI, New Delhi

  • Levick LR, Goodrich DC, Hernandez M (2008) The ecological and hydrological significance of ephemeral and intermittent streams in the arid and semi-arid American Southwest. EPA/600/R-08/134 ARS/233046, US EPA, Washington, DC

  • Lluria MR (2009) Successful application of managed aquifer recharge in the improvement of water resources management of semi-arid regions: examples from Arizona and the southwestern U.S.A. Bol Geol Minero 120:111–112

    Google Scholar 

  • McCormic RL (1975) Filter pack installation and redevelopment techniques for shallow recharge shafts. Groundwater J 13(5):400–405

    Article  Google Scholar 

  • Mutiso S (2002) The significance of subsurface water storage in Kenya. IAH Seminar, Wageningen, The Netherlands, 18–19 December 2002, IAH, Goring, UK, pp 25–31

  • Naik PK, Awasthi AK (2007) Estimation of shallow aquifer from large-diameter wells in Basalts. Geol Soc India J 69:949–958

    Google Scholar 

  • Narain V (1998) Towards a new groundwater institution for India. Water Policy 1(3):357–363

    Article  Google Scholar 

  • Narula A (2014) Feasibility of recharge shafts/injection wells for groundwater recharge in Patan district, Gujarat, India. Adv Res Eng Appl Sci J 3(7):10–19

    Google Scholar 

  • OBI Reddy GP, Chandra Mouli K, Srivastav SK, Srinivas CV, Maji AK (2000) Evaluation of groundwater potential zones using remote sensing data: a case study of Gaimukh watershed, Bhandara district, Maharashtra. Indian Soc Remote Sens J 28(1):19–32

    Article  Google Scholar 

  • Papadopulos IS, Cooper HH (1967) Drawdown in a well of large diameter. Water Resour Res 3:241–244

    Article  Google Scholar 

  • Petry B, Van Der Gun J, Boeriu P (2002) Coping with water scarcity a case history from Oman. Management of aquifer recharge and subsurface storage. IAH Seminar Wageningen, The Netherlands, 18–19 December 2002, pp 55–65

  • Pliakas F, Petalas C, Diamantis I, Kallioras (2013) Modeling of groundwater artificial recharge by reactivating an old stream bed. Water Resour Manag J 19:279–294

    Article  Google Scholar 

  • Qureshi SA, McCinick GP, Sarwar A, Sharma A (2010) Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour Manag J 24:1551–1569

    Article  Google Scholar 

  • Raju NJ, Reddy TVK, Muniratnam P, Gossel W, Wycisk P (2013) Managed aquifer recharge (MAR) by the construction of subsurface dams in the semi-arid regions: a case study of the Kalangi River Basin, Andhra Pradesh. Geol Soc India J 82:657–665

    Article  Google Scholar 

  • Rajurkar ST, Bhate VD, Sharma SB (1990) Lineament fabric of Madhya Pradesh and Maharashtra and its tectonic significance. Geol Survey India 23:241–259

    Google Scholar 

  • Ravi Shankar MN, Mohan G (2005) A GIS based hydrogeomorphic approach for identification of site-specific artificial-recharge techniques in the Deccan Volcanic Province. Earth Syst Sci J 114(5):505–514

    Article  Google Scholar 

  • Shah T (2009) Taming the anarchy: groundwater governance in South Asia. Resources for the Future, Washington, DC and International Water Management Institute, Colombo

  • Singh PK, Singh AK, Vijhani A (2014) Groundwater potential zone mapping approach in Chandraprabha Basin U.P. using remote sensing & GIS Technology. 15th Esri India User Conference, Delhi, December 2014, pp 1–8

  • Stephens DB (2015) Managed aquifer recharge. Publication ID: 9523, Presentation at the NGWA Groundwater Expo and Annual Meeting, Las Vegas, NV, December 15, 2015

  • Suleman S, Wood MK, Shah BH, Murray M (1995) Development of a rainwater harvesting system for increasing soil moisture in arid rangelands of Pakistan. Arid Environ J 31(4):471–481

    Article  Google Scholar 

  • VIIDP (2012) Operational guidelines. Vidarbha Intensive Irrigation Development Programme Ministry of Agriculture, Government of India, New Delhi, pp 1–7

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Groundwater Surveys and Development Agency, Government of Maharashtra, India and its officers, Dr. I.I. Shah (deputy director), Mr. R.K. Deshkar, Mr. N.V. Mahajan and D.V. Channe (senior geologists) of the Groundwater Surveys and Development Agency (GSDA) of Maharashtra state, India, for technical guidance and assistance. The authors are also thankful to the Rural Water Supply Department of Wardha district of Maharashtra state, India, for technical supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Bhusari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhusari, V., Katpatal, Y.B. & Kundal, P. Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India. Hydrogeol J 25, 689–706 (2017). https://doi.org/10.1007/s10040-016-1499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1499-3

Keywords

Navigation