Skip to main content
Log in

Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

Ecoulements préférentiels, écoulements diffus et nappes perchées dans une zone non saturée interstratifiée de roches fracturées

Flujo preferencial, flujo difuso y colgado en las intercalaciones de rocas fracturadas en una zona no saturada

层间断裂岩非饱和带中的优先流、弥散流和上层滞水的积聚

Escoamento preferencial, escoamento difuso e aquífero suspenso em uma intercalação rochosa fissural não saturada

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

Résumé

Des couches avec de forts contrastes géologiques dans la zone non saturée peuvent contrôler la recharge et le transport de contaminants vers les aquifères sous-jacents. Les écoulements diffus lents dans certaines couches géologiques et les écoulements préférentiels rapides dans d’autres compliquent la prévision des flux verticaux et latéraux. Un modèle simple est présenté, conçu pour ne requérir que des données géologiques limitées sur le site étudié, pour prédire ces processus de subsurface critiques vis-à-vis d’une source d’infiltration continue. Le modèle est développé et testé en utilisant les données spécifiques du site du laboratoire national de l’Idaho dans la plaine de la Eastern Snake River (ESRP), USA, où se trouvent des sources anthropiques et naturelles de forts volumes d’infiltration à partir des crues, déversements, fuites, rejets d’eaux usées, bassins de rétention et expériences hydrologiques de terrain. L’épaisse zone non saturée surmontant l’aquifère ESRP est un bon exemple d’une zone non saturée nettement stratifiée. Les interlits sédimentaires sont interstratifiés entre des unités de basalte massif et fracturé. La combinaison de sédiments superficiels, basaltes et interlits détermine les flux d’eau à travers le sous-sol variablement saturé. Les interlits sont généralement moins perméables, occasionnant parfois des nappes perchées au-dessus d’eux. Le modèle prédit avec succès le volume et l’extension des nappes perchées et estime les temps de transit vertical pendant les événements qui génèrent de forts flux depuis la surface du sol. Ces développements sont applicables aux sites présentant une épaisse zone non saturée, complexe géologiquement, d’une épaisseur substantielle au sein de laquelle des écoulements préférentiels et diffus et des nappes perchées sont importants en ce qui concerne le transport de contaminants ou la recharge de l’aquifère.

Resumen

Las capas de fuerte contraste geológico dentro de la zona no saturada pueden controlar la recarga y transporte de contaminantes a los acuíferos subyacentes. El lento flujo difuso en ciertas capas geológicas, y el rápido flujo preferencial en otras, complica la predicción de los flujos verticales y laterales. Se presenta un modelo simple, diseñado para utilizar la limitada información del sitio geológico para predecir estos procesos críticos del subsuelo en respuesta a una fuente de infiltración sostenida. Se desarrolló y probó el modelo usando información específica del sitio del Laboratorio Nacional de Idaho en el este de Snake River Plain (PEIS), EEUU, donde hay fuentes naturales y antropogénicas de altos volúmenes de infiltración a partir de inundaciones, vertidos, filtraciones, disposición de aguas residuales, estanques de retención, y experimentos hidrológicos de campo. El espesor de la zona no saturada sobre el acuífero PEIS es un buen ejemplo de una zona no saturada fuertemente estratificada. Las intercalaciones sedimentarias se intercalan entre las unidades masivas y fracturadas de basalto. La combinación de los sedimentos superficiales y las intercalaciones de basaltos determina los flujos de agua a través del subsuelo variablemente saturado. Las intercalaciones son generalmente menos conductoras, a veces causando que el agua se cuelgue por encima de ellos. El modelo predice con éxito el volumen y el alcance del agua colgada y aproxima los tiempos de desplazamiento verticales durante los eventos que generan altos flujos desde la superficie. Estos desarrollos son aplicables a los sitios que tienen una espesa zona no saturada, geológicamente compleja de espesor considerable en la cual el flujo preferencial y difuso, y el colgado del agua percolada, son importantes para el transporte de contaminantes o la recarga de los acuíferos.

摘要

非饱和带内强大的地质对比层可以控制对下伏含水层的补给和污染物运移。某一特定的地质层缓慢的弥散流及其他地质层的快速优先流使预测垂直和侧向通量变得更加复杂。这里展示了一个简单的模型,就是利用有限的地质场地信息预测针对持续渗入源产生响应的关键的地表以下的过程。利用美国斯内克河平原东部爱达荷国家实验室提供的现场特定信息建立了模型并对其进行了测试,斯内克河平原东部地区具有天然和人为的大流量的渗入源,包括洪水、泄漏、渗漏、废水处理、澄清池以及水文野外实验等。覆盖斯内克河平原东部含水层的厚层非饱和带是急剧分层的非饱和带一个很好的例子。巨大的和断裂的玄武岩单元之间散布着沉积互层。地表沉积层、玄武岩及互层的组合确定着通过饱和度变化着的地表下岩层的水通量。互层通常传导性较小,有时引起上层滞水在互层上方积聚。模型成功地预测了上层滞水积聚的量和范围,粗略估算了产生地表很高通量事件期间的垂直行程时间。这些进展可应用于具有很厚的、地质复杂的非饱和带的场地,在此非饱和带中,优先流、弥散流和渗透水的积聚对污染物的运移和含水层补给非常重要。

Resumo

O mecanismo de recarga e transporte de contaminantes de aquíferos sotopostos é controlado por intercalações rochosas de propriedades altamente contrastantes ao longo da zona não saturada. A previsibilidade dos fluxos verticais e laterais nessas formações é baixa por causa do escoamento difuso e lento em determinadas formações, e o escoamento preferencial e rápido em outras. Este trabalho apresenta um modelo simples para avaliação de processos subterrâneos críticos para a recarga a partir de dados geológicos de campo limitados, o qual considera uma fonte de infiltração constante. O modelo foi desenvolvido e testado utilizando-se dados de campo do Laboratório Nacional de Idaho, na Planície do Rio Eastern Snake (PRES), EUA, onde existe fontes naturais e antropogênicas de infiltração por inundações, derramamentos, vazamentos, lançamentos de água residuária, bacias de retenção e experimentos hidrológicos de campo. A espessa camada não saturada sobreposta ao aquífero PRES é um bom exemplo de formação não saturada constituída de estratificações delgadas. São observadas intercalações sedimentares entre unidades basálticas maciças e fissurais. Este padrão de distribuição de camadas, portanto, determina o padrão de escoamento através destas camadas com diferentes graus de saturação. Intercalações de rocha são normalmente hidraulicamente menos condutivas, ocasionando aquíferos suspensos sobre si. O volume e a extensão destes aquíferos suspensos são reproduzidos com sucesso pelo modelo, assim como o modelo também é capaz de reproduzir o tempo de percurso de escoamentos verticais ocasionados por eventos abruptos originados na superfície. Este modelo é válido para sítios que têm geologia espessa, complexa e insaturada em que o escoamento aconteça tanto de forma difusa quanto de forma preferencial, em cujos aquíferos suspensos e drenagem profunda sejam relevantes para o transporte de contaminantes ou para a recarga de aquíferos sotopostos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson SR (1991) Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at the Idaho Chemical Processing Plant and Test Reactors Area, Idaho National Engineering Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 91-4010

  • Anderson SR, Lewis BD (1989) Stratigraphy of the unsaturated zone at the radioactive waste management complex, Idaho National Engineering Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 89-4065

  • Anderson SR, Liszewski MJ (1997) Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 97-4183

  • Anderson SR, Ackerman DJ, Liszewski MJ, Freiburger RM (1996a) Stratigraphic data for wells at and near the Idaho National Engineering Laboratory, Idaho. US Geol Surv Open-File Rep 96-248

  • Anderson SR, Liszewski MJ, Ackerman DJ (1996b) Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho. US Geol Surv Open-File Rep 96-330

  • Barraclough JT, Teasdale WE, Robertson JB, Jensen RG (1967) Hydrology of the National Reactor Testing Station, Idaho, 1966. US Geol Surv Open-File Rep 67-12

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49(6):3071–3092. doi: 10.1002/wrcr.20156

    Article  Google Scholar 

  • Burgess D (1995) Results of the neutron and natural gamma logging, stratigraphy, and perched water data collected during a large-scale infiltration test. EG&G ER, WAG7-60, EG&G Idaho, Las Vegas, NV

  • Cecil LD, Orr BR, Norton T, Anderson SR (1991) Formation of perched ground-water zones and concentrations of selected chemical constituents in water, Idaho National Engineering Laboratory, Idaho, 1986–88. US Geol Surv Water Resour Invest Rep 91-4166. http://pubs.er.usgs.gov/publication/wri914166. Accessed November 2016

  • Cuthbert MO, Mackay R, Nimmo JR (2013) Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge. Hydrol Earth Syst Sci 17(3):1003–1019. http://www.hydrol-earth-syst-sci.net/17/1003/2013/hess-17-1003-2013.html. Accessed November 2016

    Article  Google Scholar 

  • Davis SN (1994) Vadose zone hydrogeology in the United States. In: Wilson LG, et al. (eds) Handbook of vadose zone characterization and monitoring. Lewis Publishers, London, pp 23–39

  • Duke CL, Roback RC, Reimus PW, Bowman RS, McLing TL, Baker KE, Hull LC (2007) Elucidation of flow and transport processes in a variably saturated system of interlayered sediment and fractured rock using tracer tests. Vadose Zone J 6(4):855–867. doi:10.2136/vzj2006.0102

    Article  Google Scholar 

  • Dunnivant FM, Newman ME, Bishop CW, Burgess D, Giles JR, Higgs BD, Hubbell JM, Neher E, Norrell GT, Pfiefer MC, Porro I, Starr RC, Wyllie AH (1998) Water and radioactive tracer flow in a heterogeneous field-scale system. Ground Water 36(6):949–958

    Article  Google Scholar 

  • Ebel BA, Nimmo JR (2013) An alternative process model of preferential contaminant travel times in the unsaturated zone: application to Rainier Mesa and Shoshone Mountain, Nevada. Environ Model Assess 18(3):345–363. doi:10.1007/s10666-012-9349-8

    Article  Google Scholar 

  • Faybishenko B, Doughty C, Steiger M, Long J, Wood TR, Jacobsen JS, Lore J, Zawislanski PT (2000) Conceptual model of the geometry and physics of water flow in a fractured basalt vadose zone. Water Resour Res 36(12):3499–3520

    Article  Google Scholar 

  • Fayer MJ, Hillel D (1986) Air encapsulation: II. profile water storage and shallow water table fluctuations. Soil Sci Soc Am J 50:572–577

    Article  Google Scholar 

  • Forbes JR, Ansley SL (2008) INTEC groundwater monitoring report. DOE/ID-11356, DOE Idaho, Idaho Falls, ID. https://ar.icp.doe.gov/owa/getimage_2?F_PAGE=1&F_DOC=DOE/ID-11356&F_REV=1

  • Gerke HH, van Genuchten MT (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29(2):305–319. doi:10.1029/92WR02339.

  • Hammermeister DP, Kling GF, Vomocil JA (1982) Perched water tables on hillsides in western Oregon: I. some factors affecting their development and longevity. Soil Sci Soc Am J 46(4):811–818

    Article  Google Scholar 

  • Healy R (2015) Simulating diffusive and preferential water flow in soils with a coupled source-Responsive/Richards-Equation Model. American Geophysical Union Fall Meeting, San Francisco, December 2015, AGU, Washington, DC

  • Hendrickx JMH, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: National Research Council (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 149–187

    Google Scholar 

  • Heppner CS, Nimmo JR (2005) A computer program for predicting recharge with a master recession curve. US Geol Surv Water Resour Invest Rep 2005-5172

  • Hill DE, Parlange J-Y (1972) Wetting front instability in layered soils. Soil Sci Soc Am Proc 36(5):697–702

    Article  Google Scholar 

  • Hinds JJ, Ge S, Fridrich CJ (1999) Numerical modeling of perched water under Yucca Mountain, Nevada. Ground Water 37(4):498–504. doi:10.1111/j.1745-6584.1999.tb01135.x

    Article  Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58(3):523–546. doi:10.1111/j.1365-2389.2007.00915.x

    Article  Google Scholar 

  • Knutson CF, McCormick KA, Smith RP, Hackett WR, O’Brien JP, Crocker JC (1990) FY 89 report: RWMC vadose zone basalt characterization. DOE-ID/EGG-WM-8949, DOE Idaho, Idaho Falls, ID

  • Kung KJS (1990) Preferential flow in a sandy vadose zone: 2. Mechanism and implications. Geoderma 46:59–71

  • Larsbo M, Jarvis N (2003) MACRO 5.0: a model of water flow and solute transport in macroporous soil—technical description. Studies in the Biogeophysical Environment, Emergo 2003:6, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden

  • Lindholm GF (1996) Summary of the Snake River Plain regional aquifer-system analysis in Idaho and eastern Oregon. US Geol Surv Prof Pap 1408-A

  • Marinas M, Roy JW, Smith JE (2013) Changes in entrapped gas content and hydraulic conductivity with pressure. Groundwater 51(1):41–50

    Article  Google Scholar 

  • McElroy DL, Hubbell J (1990) Hydrologic and physical properties of sediments at the Radioactive Waste Management Complex. EGG-BG-9147, EG&G Idaho, Las Vegas, NV

  • Miller DE, Gardner WH (1962) Water infiltration into stratified soil. Soil Sci Soc Am Proc 26:115–119

    Article  Google Scholar 

  • Mirus BB, Nimmo JR (2013) Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow. Water Resour Res 49(3):1458–1465. doi:10.1002/wrcr.20141

  • Mirus BB, Perkins KP, Nimmo JR (2011) Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho. US Geol Surv Sci Invest Rep 2011-5222

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Nimmo JR (2007) Simple predictions of maximum transport rate in unsaturated soil and rock. Water Resour Res 43(5). doi:10.1029/2006WR005372

  • Nimmo JR (2010) Theory for source-responsive and free-surface film modeling of unsaturated flow. Vadose Zone J 9(2):295–306. doi:10.2136/vzj2009.0085

    Article  Google Scholar 

  • Nimmo JR, Malek-Mohammadi S (2015) Quantifying water flow and retention in an unsaturated fracture-facial domain. In: Faybishenko B et al (eds) Dynamics of fluids and transport in fractured porous systems. Geophysical Monograph 210, AGU, Washington, DC, pp 169–179

  • Nimmo JR, Mitchell L (2013) Predicting vertically nonsequential wetting patterns with a source-responsive model. Vadose Zone J 12(4)

  • Nimmo JR, Perkins KS (2008) Effect of soil disturbance on recharging fluxes: case study on the Snake River Plain, Idaho National Laboratory, USA. Hydrogeol J 16(5):829–844. doi:10.1007/s10040-007-0261-2

    Article  Google Scholar 

  • Nimmo JR, Perkins KS, Rose PA, Rousseau JP, Orr BR, Twining BV, Anderson SR (2002) Kilometer-scale rapid transport of naphthalene sulfonate tracer in the unsaturated zone at the Idaho National Engineering and Environmental Laboratory. Vadose Zone J 1:89–101

    Article  Google Scholar 

  • Nimmo JR, Rousseau JP, Perkins KS, Stollenwerk KG, Glynn PD, Bartholomay RC, Knobel LL (2004) Hydraulic and geochemical framework of the Idaho National Engineering and Environmental Laboratory vadose zone. Vadose Zone J 3(1):6–34, http://wwwrcamnl.wr.usgs.gov/uzf/abs_pubs/papers/vzj.3.6.pdf. Accessed November 2016

    Article  Google Scholar 

  • Oostrom M, Truex MJ, Carroll KC, Chronister GB (2013) Perched-water analysis related to deep vadose zone contaminant transport and impact to groundwater. J Hydrol 505:228–239

    Article  Google Scholar 

  • Orr BR (1999) A transient numerical simulation of perched ground-water flow at the test reactor area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94. U.S. Geological Survey Water-Resources Investigations Report 99-4277 (DOE/ID-22162), p 54

  • Perkins KS (2003) Measurement of sedimentary interbed hydraulic properties and their hydrologic influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. US Geol Surv Water Resour Invest Rep 03-4048. http://wwwrcamnl.wr.usgs.gov/uzf/abs_pubs/papers/WRI034048.pdf. Accessed November 2016

  • Perkins KS, Nimmo JR (2000) Measurement of hydraulic properties of the B-C interbed and their influence on contaminant transport in the unsaturated zone at the Idaho Engineering and Environmental Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 00-4073

  • Perkins KP, Nimmo JR (2009) High-quality unsaturated zone hydraulic property data for hydrologic applications. Water Resour Res 45:W07417. doi:10.1029/2008WR007497

    Article  Google Scholar 

  • Perkins KS, Mirus BB, Johnson BD (2014) Measurement of Unsaturated Hydraulic Properties and Evaluation of Property-Transfer Models for Deep Sedimentary Interbeds, Idaho National Laboratory. US Geol Surv Sci Invest 2014-5026. http://pubs.usgs.gov/sir/2007/5093/. Accessed November 2016

  • Porro I, Bishop CW (1995) Large-scale infiltration test CPN data analysis, engineering design file, WAG7-58, INEL-95/040, DOE-ID, Idaho Falls, ID

  • Pruess K (1998) On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. J Contam Hydrol 30:333–362

    Article  Google Scholar 

  • Rightmire CT, Lewis BD (1987) Hydrogeology and geochemistry of the unsaturated zone, Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho. US Geol Surv, Water Resour Invest 87-4198

  • Robinson BA, Broxton DE, Vaniman DT (2005) Observations and modeling of deep perched water beneath the Pajarito Plateau. Vadose Zone J 4(3):637–652. doi:10.2136/vzj2004.0168

    Article  Google Scholar 

  • Salve R, Rempe DM, Dietrich WE (2012) Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Water Resour Res 48(11):W11528. doi:10.1029/2012WR012583

    Article  Google Scholar 

  • Smith RP (2004) Geologic setting of the Snake River Plain aquifer and vadose zone. Vadose Zone J 3(1):47–58, https://www.soils.org/publications/vzj/abstracts/3/1/47

    Article  Google Scholar 

  • Sorenson KS, Wylie AH, Wood TR (1996) Test area north hydrogeologic studies test plan: operable Unit 1-07B, I NEL-96/0105, DOE-ID, Idaho Falls, ID

  • Twining BV, Bartholomay RC, Hodges MKV (2014) Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho. US Geol Surv Sci Invest 2014-5098

  • US Department of Energy (1989) Climatography of the Idaho National Engineering Laboratory. DOE/ID-12118, US Department of Energy Idaho Operations Office, Idaho Falls, ID

  • Winfield KA (2003) Spatial variability of sedimentary interbed properties near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. US Geol Surv Water Resour Invest Rep 03-4142. http://wwwrcamnl.wr.usgs.gov/uzf/abs_pubs/papers/WRI034048.pdf. Accessed November 2016

  • Wood T, Huang H (2015) Experimental and modeling studies of episodic air-water two-phase flow in fractures and fracture networks. In: Faybishenko B et al (eds) Fluid dynamics in complex fractured-porous systems. Wiley, Chichester, UK, pp 209–228

  • Wood TR, Norrell GT (1996) Integrated large-scale aquifer pumping and infiltration tests, groundwater pathways. Summary report, OU 7-06 INEL-96/0256, Lockheed Martin, Idaho Falls, ID

Download references

Acknowledgements

This work was funded in part by the USGS INL Project Office. The authors are grateful to those who provided data and background information, including especially Jeff Forbes of the Idaho Cleanup Project and Tom Wood of the University of Idaho. Annette Schafer, of Battelle Energy Alliance, and several other reviewers and editors improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Nimmo.

Appendix: Evidence to support the conceptual model

Appendix: Evidence to support the conceptual model

This study relies strongly on data from infiltration experiments conducted at four particular ESRP locations, designated LSIT, SATT, VZRP, and INTEC (Fig. 9). This Appendix gives details concerning three of these.

Fig. 9
figure 9

Sites of major surface infiltration experiments on the ESRP, noting the spatially varying trend of surficial sediment characteristics

LSIT

The Large Scale Infiltration Test was conducted in 1994 (Wood and Norrell 1996). A circular pond, area 26,300 m2, was filled with water at a constant head for 5 days, allowed to drain for 11 days, and maintained at a constant head (maximum 1.4 m) for 19 more days. Water remained in the pond at declining level for 11 more days after replenishment had stopped.

Sixty-six instrumented wells within and around the pond were used to monitor flow through basalt and perching on top of the sedimentary interbed at 55 m depth. The wells were arranged in four rings, designated A, B, C, and E, in order of increasing radii (Table 6). The wells were grouped in clusters, usually of three, positioned at approximately equal spacing around the circumference of each ring. Within each cluster, except one in the A-ring, one well was drilled to the interbed and the others to shallower depths. Two wells were drilled through the interbed.

Table 6 Radial layout of LSIT site

To evaluate changes in water content above the first interbed, neutron counts over a range of depths in the wells were measured daily from June 23 until the end of August 1994. The data from A wells (within the pond) show an increase in water content during the period of ponding (Fig. 10a). Data from the B wells, however, show no increase in water content (Fig. 10b). This suggests that infiltrated water in the surficial sediments or in the basalt did not migrate laterally more than 15 m beyond the edge of the pond, where the B wells are located.

Fig. 10
figure 10

Neutron counts before the experiment on June 23, 1994, and during the experiment on August 4, 1994: a well A01C11 within the pond radius, and b well B01C11 outside. More counts indicate less water, so water content increases to the left

Water from the pond began infiltrating when the experiment started on July 25, 1994, and perched water was first detected on August 8. Results from the measurements are plotted in Fig. 11. The A wells reported much higher perched water elevations than the B, C, or E wells and show no rising or falling limb because these wells were completed at levels considerably above the interbed.

Fig. 11
figure 11

Perched water-table hydrograph for all wells with perched water detected during the LSIT

The A wells show no trend in perched water-table elevation over time. The B wells do exhibit a trend over time, all but two of them (B08N11 and B09N11) reaching elevations of 1,492.0 to 1,492.5 m. The two exceptions are considerably lower than the rest, possibly because of a topographical impediment that limits the flow to these positions. The elevation of perched water in the C wells is lower than that in the B wells, and in the E well is less than any others. This trend suggests that the perched water elevations decrease with distance from the infiltration basin (Porro and Bishop 1995).

VZRP

During the 2007 VZRP experiments, the average rate of water discharged into the ponds was 4,800 m3/day. Though the pond basins at the surface were larger, actual ponded water during these experiments never covered an area larger than about 1,000 m2. Data from Duke et al. (2007) suggest that infiltrated water spread laterally within the relatively thick (15 m) VZRP surficial sediment layer before flowing into the underlying basalt. The data indicated this spreading extended laterally at least 100 m, but no more than 140 m. The area of percolation into basalt then was between 31,400 and 90,800 m2, much larger than the ponded area at the surface.

INTEC leaks

Two wells at the INTEC facility, MW-6 and 33-3, exhibit significant responses to nearby anthropogenic leaks of water intended for fire-fighting (Fig. 12; Forbes and Ansley 2008); J. Forbes, Idaho Cleanup Project, personal communication, 2014). Figure 13 shows the hydrographs of these wells.

Fig. 12
figure 12

Aerial view of wells MW-6 and 33-3 and three leaks at the INTEC facility

Fig. 13
figure 13

Perched water table hydrographs for wells 33-3 and MW-6 during near-surface water leaks at INTEC in a 2007, b 2012, and c 2013

The first leak, from fire hydrant HYD-0521, began leaking on June 27, 2007, and was stopped on February 6, 2008, after releasing an estimated 5,700 m3 of water. This leak triggered a response only in well MW-6, where the water table rose about 1 m to a steady position of 1,463 m. The second leak began January 5, 2012 and was stopped on May 15, 2012 after releasing 7,400 m3 of water. The perched water table near MW-6 rose 4 to 1,465 m above sea level, and near well 33-3 rose 2 to 1,464 m. The third leak began March 2, 2013 and was stopped on May 20, 2013 after releasing 12,900 m3 of water. The perched water table near MW-6 rose 4.5 to 1,464 m above sea level, and near well 33-3 rose 1.5 to 1,464.5 m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmo, J.R., Creasey, K.M., Perkins, K.S. et al. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone. Hydrogeol J 25, 421–444 (2017). https://doi.org/10.1007/s10040-016-1496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1496-6

Keywords

Navigation