Skip to main content
Log in

Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots

Evaluation de la méthode du numéro de courbe du Service de la Conservation des Sols à partir de données provenant de parcelles agricoles

Evaluación de la metodología de número de curva del Servicio de Conservación de Suelos con datos de parcelas agrícolas

采用小块农田资料评估水土保持曲线数字法

Avaliação da metodologia do número da curva do Serviço de Conservação do Solo utilizando dados de parcelas agrícolas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.

Résumé

La méthode du numéro de courbe du Service de la Conservation des Sols (SCS-CN), aussi connue sous le nom de la méthode du numéro de courbe du service de la Conservation des Ressources Naturelles (NRCS-CN), est populaire pour le calcul du volume d’eau de ruissellement direct pour un événement pluvieux donné. La performance de la méthode SCS-CN, basée sur un grand ensemble de données de pluies (P) et de ruissellement (Q) de bassins versants des Etats-Unis d’Amérique, est évaluée en utilisant un grand ensemble de données d’événements naturels pluvieux à partir de 27 parcelles agricoles en Inde. Dans l’ensemble, le CN estimé à partir des tables (chapitre 4) du manuel national d’ingénierie ne correspond pas aux valeurs dérivées des ensembles de données observées P et Q. Par conséquent, la prévision du ruissellement en utilisant les valeurs antérieures de CN était de mauvaise qualité pour 22 (sur 24) parcelles. Cependant, la comparaison était un peu mieux pour les valeurs les plus élevées de CN, en accord avec l’idée générale que la méthode existante SCS-CN donne de meilleurs résultats pour les événements avec des précipitations et ruissellement élevées (CN élevées). La capacité d’infiltration (fc) était la principale variable explicative de la production du ruissellement (ou CN) dans les parcelles d’étude car il montrait la relation inverse attendue entre le CN et la fc. L’optimisation graphique de données a abouti à des valeurs initiales de coefficient d’abstraction (λ) comprises entre 0 et 0.659 pour l’ensemble de données classées et entre 0 et 0.208 pour l’ensemble naturel des données (avec 0 comme la valeur la plus fréquente). Les valeurs moyennes et médianes λ étaient, respectivement, 0.030 et 0 pour l’ensemble de données de pluie–ruissellement naturel et 0.108 et 0 pour l’ensemble des données ordonnées de pluie–ruissellement. L’estimation du ruissellement était très sensible à λ et est amélioré de manière constante quand λ variait entre 0.2 et 0.03.

Resumen

El método del número de curva del Servicio de Conservación de Suelos (SCS-CN), también conocido como el método del número de curva del Servicio de Conservación de Recursos Naturales (NRCS-CN), es popular para calcular el volumen de escorrentía superficial directa para un evento de lluvia dada. El rendimiento del método SCS-CN, basado datos de grandes precipitaciones (P) y la escorrentía (Q) de las cuencas de los Estados Unidos, se evalúa usando un gran conjunto de datos de eventos de tormentas naturales a partir de 27 parcelas agrícolas en la India. En general, el CN calcula a partir de tablas del Manual Nacional de Ingeniería (Capítulo 4) que no se corresponden con las derivadas de los conjuntos de datos observados P y Q. Como resultado, la predicción de la escorrentía usando las anteriores CN era pobre para los datos de 22 (de 24) parcelas. Sin embargo, la coincidencia era un poco mejor para los valores más altos de CN, consistente con la noción general de que el actual método SCS-CN tiene un mejor rendimiento para eventos de alta precipitación–escorrentía (CN altos). La capacidad de infiltración (fc) fue la principal variable explicativa de la producción de escorrentía (o CN) en las parcelas de estudio, ya que exhibió la relación inversa esperada entre NC y fc. La optimización de la trama de datos dio valores iniciales del coeficiente de abstracción (λ) de 0 a 0.659 para el conjunto de datos ordenados y de 0 a 0.208 para el conjunto de datos naturales (siendo 0 el valor más frecuente). Los valores de la media y la mediana de λ fueron, respectivamente, 0.030 y 0 para el conjunto de datos de lluvia–escorrentía natural y 0.108 y 0 para el conjunto de datos de lluvia–escorrentía ordenados. La estimación de la escorrentía era muy sensible a λ y mejoró consistentemente con λ cambiado desde 0.2 a 0.03.

摘要

水土保持曲线数字法也称为自然资源保持曲线数字法,在计算某一特定降雨事件直接地表径流量中非常流行。根据美国流域大的降雨(P)和径流(Q)数据集,采用印度27块农田天然暴雨事件的大的数据集对水土保持曲线数字法的性能进行了评估。总的来说,国家工程手册(第四章)表中的曲线数字估算值与来源于观测的PQ数据集并不匹配。结果是,采用以前的曲线数字对(24块中的)22块农田资料进行的径流预测结果很差。然而,对于较高的曲线数值匹配稍微好一点,符合总的认识,即现有的水土保持曲线数字法对于较高的降雨-径流(高曲线数字)事件表现较好。渗入能力(fc)在研究农田径流的产生中是主要的解释变量,因为其展现了所预料的曲线数字和fc之间的相反关系。农田资料最优化产生了初始损失系数(λ),有序数据集为0到0.659,自然数据集为0到0.208(0作为最频遇值)。天然降雨–径流数据集的λ平均值和λ中间值分别为0.030和0,有序降雨–径流数据集的λ平均值和λ中间值分别为0.108和0。径流估算结果对于λ来说非常敏感,随着λ从0.2变为0.03,径流估算结果不断改进。

Resumo

O método do número da curva do Serviço de Conservação de Solo (NC–SCS), também conhecido como o método do numero da curva do Serviço de Conservação de Recursos Naturais (NC-SCRN) é popular por computar o volume do escoamento superficial direto para um dado evento de precipitação. O desempenho do método NC-SCS, baseado em dados de precipitação (P) e escoamento (Q) em bacias hidrográficas nos Estados Unidos, foi avaliado utilizando um grande conjunto de dados sobre 27 eventos de precipitação em parcelas agrícolas na Índia. No geral, as estimativas do NC das tabelas do Manual Nacional de Engenharia (Capítulo 4) não coincidem com os valores obtidos através do conjunto de dados de P e Q observados. Como resultado, a previsão de escoamento superficial utilizando os NC antigos foi insuficiente para os dados de 22 (de 24) parcelas. Entretanto, a similaridade foi um pouco melhor para altos valores de NC, coerente com a noção geral de que o método NC-SCS existente apresenta um melhor desempenho em eventos com grande volume de precipitação-escoamento. A capacidade de infiltração (fc) foi a principal variável explicativa para a geração do escoamento superficial (ou NC) nas parcelas estudadas uma vez que mostrou a relação inversa à esperada entre o NC e a fc. A optimização dos dados das parcelas rendeu valores do coeficiente da abstração inicial (λ) de 0 a 0.659 para o conjunto de dados ordenados e de 0 a 0.208 para o conjunto de dados natural (com 0 sendo o valor mais frequente). Os valores médios e medianos de λ foram, respectivamente, 0.030 e 0 para o conjunto de dados de precipitação–escoamento natural e 0.108 e 0 para o conjunto de dados de precipitação–escoamento ordenado. A estimativa do escoamento superficial foi muito sensível a λ e melhorou consistentemente assim que λ mudou de 0.2 para 0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajmal M, Moon G, Ahn J, Kim T (2015a) Quantifying excess storm water using SCS-CN-based rainfall runoff models and different curve number determination methods. J Irrig Drain Eng 141(3):04014058

    Article  Google Scholar 

  • Ajmal M, Moon G, Ahn J, Kim T (2015b) Investigation of SCS and its inspired modified models for runoff estimation in South Korean watersheds. J Hydro Environ Res 9(4):592–603

    Article  Google Scholar 

  • Ajmal M, Waseem M, Ahn J, Kim T (2015c) Improved runoff estimation using event-based rainfall–runoff models. Water Resour Manag 29:1995–2010

    Article  Google Scholar 

  • Ajmal M, Waseem M, Wi S, Kim T (2015d) Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. J Hydrol 530:623–633

    Article  Google Scholar 

  • Ajmal M, Waseem M, Kim HS, Kim T (2016) Potential implications of pre-storm soil moisture on hydrological prediction. J Hydro Environ Res 11:1–15

    Article  Google Scholar 

  • Ali S, Sharda VN (2008) A comparison of curve number based methods for runoff estimation from small watersheds in a semi-arid region of India. Hydrol Res 39(3):191–200

    Article  Google Scholar 

  • Archibald JA, Buchanan B, Fuka DR, Georgakakos CB, Lyon SW, Walter MT (2014) A simple, regionally parameterized model for predicting nonpoint source areas in the northeastern US. J Hydrol Reg Stud 1:74–91

    Article  Google Scholar 

  • Aron G, Miller AC, Lakatos DF (1977) Infiltration formula based on SCS curve number. J Irrig Drain Div 103(4):419–427

    Google Scholar 

  • Baltas EA, Dervos NA, Mimikou MA (2007) Determination of the SCS initial abstraction ratio in an experimental watershed in Greece. Hydrol Earth Syst Sci 11:1825–1829

    Article  Google Scholar 

  • Bonta JV (1997) Determination of watershed curve number using derived distributions. J Irrig Drain Div 123(1):28–36

    Article  Google Scholar 

  • Cazier DJ, Hawkins RH (1984) Regional application of the curve number method, Proc., Water Today and Tomorrow, ASCE Irrigation and Drainage Division Special Conf. ASCE, Reston, VA

    Google Scholar 

  • D’Asaro F, Grillone G (2012) Empirical investigation of curve number method parameters in the Mediterranean area. J Hydrol Eng 17:1141–1152

    Article  Google Scholar 

  • D’Asaro F, Grillone G, Hawkins RH (2014) Curve number: empirical evaluation and comparison with curve number handbook tables in Sicily. J Hydrol Eng 19(12):04014035, pp 1–13

    Article  Google Scholar 

  • Deshmukh DS, Chaube UC, Hailu AE, Gudeta AA, Kassa MT (2013) Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall–runoff data and land slope. J Hydrol 492:89–101

    Article  Google Scholar 

  • Donigian AS, Imhoff JC, Bicknell BR (1983) Predicting water quality resulting from agricultural nonpoint-source pollution via simulation: HSPF. In: Agricultural management and water quality. Iowa State University Press, Ames, IA, pp 200–249

  • Durbude DG, Jain MK, Mishra SK (2011) Long-term hydrologic simulation using SCS-CN-based improved soil moisture accounting procedure. Hydrol Process 25:561–579

    Article  Google Scholar 

  • EI-Sadek A, Feyen J, Berlamont J (2001) Comparison of models for computing drainage discharge. J Irrig Drain Eng ASCE 127(6):363–369

    Article  Google Scholar 

  • Elhakeem M, Papanicolaou AN (2009) Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resour Manag 23(12):2455–2473

    Article  Google Scholar 

  • Fennessey LA (2000) The effect of inflection angle, soil proximity and location on runoff. PhD Thesis, Pennsylvania State University, State College, PA, USA

  • Fentie B, Yu B, Silburn MD, Ciesiolka CAA (2002) Evaluation of eight different methods to predict hill-slope runoff rates for a grazing catchment in Australia. J Hydrol 261:102–114

    Article  Google Scholar 

  • Feyereisen GW, Strickland TC, Bosch DD, Truman CC, Sheridan JM, Potter TL (2008) Curve number estimates for conventional and conservation tillages in the southeast Coastal Plain. J Soil Water Conserv 63(3):120–128

    Article  Google Scholar 

  • Fu S, Zhang G, Wang N, Luo L (2011) Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China. Trans ASABE 54(1):163–169

    Article  Google Scholar 

  • Garg V, Nikarn BR, Thakur PK, Aggarwal SP (2013) Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. Int J Hydrol Sci Technol 3(2):l41–l159

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Hauser VL, Jones OR (1991) Runoff curve numbers for the Southern High Plains. Trans Am Soc Agric Eng 34:142–148

    Article  Google Scholar 

  • Hawkins RH (1973) Improved prediction of storm runoff in mountain watershed. Irrig Drain Div ASCE 99:519–523

    Google Scholar 

  • Hawkins RH (1984) A comparison of predicted and observed runoff curve numbers. Symposium proceedings, Water Today and Tomorrow. ASCE, Reston, VA, pp 702–709

    Google Scholar 

  • Hawkins RH (1993) Asymptotic determination of runoff curve numbers from data. J Irrig Drain Eng 119(2):334–345

    Article  Google Scholar 

  • Hawkins RH, Khojeini AV (2000) Initial abstraction and loss in the curve number method. Hydrol Water Resour Arizona Southwest http://arizona.openrepository.com/arizona/handle/10150/296552. Accessed August 2016

  • Hawkins RH, Ward TJ (1998) Site and cover effects on event runoff, Jornada experimental range, New Mexico, Symp. Proc., Conf. on Rangeland Management and Water Resources. American Water Resources Associations, Middleburg, VA, pp 361–370

    Google Scholar 

  • Hawkins RH, Hjelmfelt AT, Zevenbergen AW (1985) Runoff probability, storm depth, and curve numbers. J Irrig Drain Eng 111(4):330–340

    Article  Google Scholar 

  • Hawkins RH, Jiang R, Woodward DE, Hjelmfelt AT, van Mulle, JA, Quan QD (2002) Runoff curve number method: examination of the initial abstraction ratio In: Proceedings of the Second Federal Interagency Hydrologic Modeling Conference. ASCE, Las Vegas, NV

  • Hawkins RH, Ward TJ, Woodward DE, Van Mullem JA (2009) Curve number hydrology: state of practice. ASCE, Reston, VA, 106 pp

    Google Scholar 

  • Hjelmfelt AT (1980) Empirical-investigation of curve number techniques. J Hydraul Eng Div 106(9):1471–1476

    Google Scholar 

  • Hjelmfelt AT, Kramer KA, Burwell RE (1982) Curve numbers as random variables, Proc. Int. Symp. on Rainfall–Runoff Modeling. Water Resources, Littleton, CO, pp 365–373

    Google Scholar 

  • Huang M, Jacgues G, Wang Z, Monique G (2006) A modification to the soil conservation service curve number method for steep slopes in the loess plateau of China. Hydrol Process 20(3):579–589

    Article  Google Scholar 

  • IBM (2011) IBM SPSS Statistics for Windows, version 20.0. IBM, Armonk, NY

  • Jain MK, Mishra SK, Suresh Babu P, Venugopal K, Singh VP (2006a) An enhanced runoff curve number model incorporating storm duration and non-linear Ia–S relation. J Hydrol Eng 11(6):631–635

    Article  Google Scholar 

  • Jain MK, Mishra SK, Suresh Babu P, Venugopal K (2006b) On the Ia–S relation of the SCS-CN method. Nord Hydrol 37(3):261–275

    Article  Google Scholar 

  • Jiang R (2001) Investigation of runoff curve number initial abstraction ratio. MSc Thesis, University of Arizona, Tucson, AZ, 120 pp

  • Kumar K, Hari Prasad KS, Arora MK (2012) Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrol Sci J 57(4):776–789

    Article  Google Scholar 

  • Lal M, Mishra SK, Pandey A (2015) Physical verification of the effect of land features and antecedent moisture on runoff curve number. Catena 133:318–327

    Article  Google Scholar 

  • Lim KJ, Engel BA, Tang Z, Muthukrishnan S, Choi J, Kim K (2006) Effects of calibration on L-THIA GIS runoff and pollutant estimation. J Environ Manag 78(1):35–43

    Article  Google Scholar 

  • Mays LW (2005) Water resources engineering, 2nd edn. Willey, Chichester, UK

    Google Scholar 

  • McCuen RH (2002) Approach to confidence interval estimation for curve numbers. J Hydrol Eng 7(1):43–48

    Article  Google Scholar 

  • Menberu MW, Haghighi AT, Ronkanen AK, Kværner J, Kløve B (2015) Runoff curve numbers for peat-dominated watersheds. J Hydraul Eng 20(4):04014058

    Google Scholar 

  • Michel C, Vazken A, Perrin C (2005) Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure. Water Resour Res 41(W02011):1–6

    Google Scholar 

  • Mishra SK, Singh VP (2002) SCS-CN-based hydrologic simulation package, chapt. 13. In: Singh VP, Frevert DK (eds) Mathematical models in small watershed hydrology and applications. Water Resources, Littleton, CO, pp 391–464

    Google Scholar 

  • Mishra SK, Singh VP (2003) Soil Conservation Service curve number (SCS-CN) methodology. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Mishra SK, Singh VP (2004) Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrol Process 18:1291–1313

    Article  Google Scholar 

  • Mishra SK, Jain MK, Singh VP (2004) Evaluation of SCS-CN-based model incorporating antecedent moisture. Water Resour Manag 18(6):567–589

    Article  Google Scholar 

  • Mishra SK, Sahu RK, Eldho TI, Jain MK (2006a) A generalized relation between initial abstraction and potential maximum retention in SCS-CN-based model. J River Basin Manag 4(4):245–253

    Article  Google Scholar 

  • Mishra SK, Sahu RK, Eldho TI, Jain MK (2006b) An improved Ia–S relation incorporating antecedent moisture in SCS-CN methodology. Water Resour Manag 20(5):643–660

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Motovilov YG, Gottschalk L, England K, Rodhe A (1999) Agric For Meteorol 98(99):257–277

    Article  Google Scholar 

  • Nadal-Romero E, Latron J, Lana-Renault N, Serrano-Muela P, Martí-Bono C, David Regüés D (2008) Temporal variability in hydrological response within a small catchment with badland areas, central Pyrenees. Hydrol Sci J 53:629–639

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10:282–290

  • NRCS (1997) ‘Hydrology’ national engineering handbook, supplement A, section 4. Soil Conservation Service, USDA, Washington, DC

    Google Scholar 

  • Parajuli P, Mankin KR, Barnes PL (2007) New methods in modeling source specific bacteria at watershed scale using SWAT. In: Watershed management to meet water quality standards and TMDLs (total maximum daily load), Proceedings. ASABE Publ. No. 701P0207, ASABE, St. Joseph, MI

  • Parajuli PB, Mankin KR, Barnes PL (2009) Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresour Technol 100(2):953–963

    Article  Google Scholar 

  • Ponce VM, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1(1):11–19

    Article  Google Scholar 

  • Ritter A, Muñoz-Carpena R (2013) Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480:33–45

    Article  Google Scholar 

  • Rodríguez-Blanco ML, Taboada-Castro MM, Taboada-Castro MT (2012) Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrol Sci J 57(3):445–459

    Article  Google Scholar 

  • Sahu RK (2007) Modifications to SCS-CN technique for rainfall–runoff modelling. PhD Thesis, Indian Institute of Technology, Bombay

  • Sahu RK, Mishra SK, Eldho TI, Jain MK (2007) An advanced soil moisture accounting procedure for SCS curve number method. J Hydrol Process 21(21):2872–2881

    Article  Google Scholar 

  • Sahu RK, Mishra SK, Eldho TI (2010a) An improved AMC-coupled runoff curve number model. Hydrol Process 24:2834–2839

    Article  Google Scholar 

  • Sahu RK, Mishra SK, Eldho TI (2010b) Comparative evaluation of SCS-CN-inspired models in applications to classified datasets. Agric Water Manag 97(5):749–756

    Article  Google Scholar 

  • Sahu RK, Mishra SK, Eldho TI (2012) An improved storm duration and AMC coupled SCS-CN concept-based model. J Hydrol Eng 17(11):1173–1179

    Article  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188

    Article  Google Scholar 

  • Sartori A, Hawkins R, Genovez A (2011) Reference curve numbers and behavior for sugarcane on highly weathered tropical soils. J Irrig Drain Eng 137(11):705–711

    Article  Google Scholar 

  • Scherrer SF, Naef F, Faeh AO, Cordery I (2007) Formation of runoff at the hillslope scale during intense rainfall. Hydrol Earth Syst Sci 11:907–922

    Article  Google Scholar 

  • Schneider LE, McCuen RH (2005) Statistical guidelines for curve number generation. J Irrig Drain Eng 131(3):282–290

    Article  Google Scholar 

  • SCS (1972) ‘Hydrology’ national engineering handbook, supplement A, section 4. Soil Conservation Service, USDA, Washington, DC

    Google Scholar 

  • Senbeta DA, Shamseldin AY, O’Connor KM (1999) Modification of the probability-distributed interacting storage capacity model. J Hydrol 224:149–168

    Article  Google Scholar 

  • Sharpley AN, Williams JR (1990) Epic-erosion/productivity impact calculator: 1. model determination, USDA technical bulletin, no. 1768, USDA, Washington, DC

  • Shi ZH, Chen LD, Fang NF, Qin DF, Cai CF (2009) Research on the SCS-CN initial abstraction ratio using rainfall–runoff event analysis in the Three Gorges Area, China. Catena 77:1–7

    Article  Google Scholar 

  • Singh J, Knapp HV, Arnald JG, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J Am Water Resour Assoc 41(2):343–360

    Article  Google Scholar 

  • Singh PK, Mishra SK, Berndtsson R, Jain MK, Pandey RP (2015) Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resour Manag 29(11):4111–4127

    Article  Google Scholar 

  • Sneller JA (1985) Computation of runoff curve numbers for rangelands from Landsat data. Technical report HL85-2, Agricultural Research Service, Hydrology Laboratory, Beltsville, MD

    Google Scholar 

  • Soulis KX, Valiantzas JD (2013) Identification of the SCS-CN parameter spatial distribution using rainfall–runoff data in heterogeneous watersheds. Water Resour Manag 27(6):1737–1749

    Article  Google Scholar 

  • Stewart D, Canfield E, Hawkins RH (2012) Curve number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data. J Hydrol Eng 17:1180–1187

    Article  Google Scholar 

  • Suresh Babu P, Mishra SK (2012) Improved SCS-CN-inspired model. J Hydrol Eng 17:1164–1172

    Article  Google Scholar 

  • Taguas E, Yuan Y, Licciardello F, Gómez J (2015) Curve numbers for olive orchard catchments: case study in southern Spain. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0000892

    Google Scholar 

  • Tedela NH, McCutcheon SC, Rasmussen TC, Tollner EW (2008) Evaluation and improvement of the curve number method of hydrological analysis on selected forested watersheds of Georgia. Project report submitted to Georgia Water Resources Institute, Supported by the US Geological Survey, Reston, VA, 40 pp

  • Tedela NH, McCutcheon SC, Rasmussen TC, Hawkins RH, Swank WT, Campbell JL, Adams MB, Jackson CR, Tollner EW (2012) Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States. J Hydrol Eng 17(11):1188–1198

    Article  Google Scholar 

  • Titmarsh GW, Pilgrim DH, Cordery I, Hossein AA (1989) An examination of design flood estimations using the U.S. soil conservation services method. Hydrology and Water Resources Symposium. The Institution of Engineers, Barton, Australia

    Google Scholar 

  • Titmarsh GW, Cordery I, Pilgrim DH (1995) Calibration procedures for rational and USSCS design hydrographs. J Hydraul Eng 121(1):61–70

    Article  Google Scholar 

  • Titmarsh GW, Cordery I, Pilgrim DH (1996) Closure of calibration procedures for rational and USSCS design flood methods. J Hydraul Eng 122(3):177

    Article  Google Scholar 

  • Van Liew MW, Arnold JG, Garbrecht JD (2003) Hydrologic simulation on agricultural watersheds: choosing between two models. Trans ASAE 46(6):1539–1551

    Article  Google Scholar 

  • Van Mullem JA, Woodward DE, Hawkins RH, Hjelmfelt AT, Quan QD (2002) Runoff curve number method: beyond the handbook. Proc., 2nd Federal Interagency Hydrologic Modeling Conf., Advisory Committee on Water Information (ACWI), Washington, DC

  • Woodward DE, Hawkins RH, Quan QD (2002) Curve number method: origins, applications and limitations. Proc., Second Federal Interagency Hydrologic Modeling Conference: Hydrologic Modeling for the 21st Century, Subcommittee on Hydrology of the Advisory Committee on Water Information, Las Vegas, NV

  • Woodward DE, Hawkins RH, Jiang R, Hjelmfelt AT, Van Mullem JA, Quan QD (2004) Runoff curve number method: examination of the initial abstraction ratio In: Proceedings of the World Water and Environmental Resources Congress and Related Symposiums. ASCE, Philadelphia, PA

    Google Scholar 

  • Woodward DE, Scheer CC, Hawkins RH (2006) Curve number update used for runoff calculation. Ann Warsaw Agric Univ Land Reclam Land Reclam 37:33–42

    Google Scholar 

  • Yuan PT (1933) Logarithmic frequency distribution. Ann Math Stat 4(1):30–74

    Article  Google Scholar 

  • Yuan Y, Nie J, McCutcheon SC, Taguas EV (2014) Initial abstraction and curve numbers for semiarid watersheds in south eastern Arizona. Hydrol Process 28:774–783

    Article  Google Scholar 

  • Zhang Y, Wei H, Nearing MA (2011) Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrol Earth Syst Sci 15:3171–3179

    Article  Google Scholar 

  • Zhou SM, Lei TW (2011) Calibration of SCS-CN initial abstraction ratio of a typical small watershed in the Loess Hilly-Gully region. China Agric Sci 44:4240–4247

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Indian National Committee on Surface Water (INCSW) (formerly Indian National Committee on Hydrology (INCOH)), and Ministry of Water Resources, Govt. of India, New Delhi, under the Research and Development project on “Experimental Verification of SCS Runoff Curve Numbers for Selected Soils and Land Uses”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Lal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 307 kb)

Appendix: Notation

Appendix: Notation

I a :

Initial abstraction (mm)

Rcm :

Mean runoff coefficient of plot

Rc:

Event runoff coefficient

λ :

Initial abstraction coefficient

P :

Rainfall (mm)

Q :

Observed runoff (mm)

Q m :

Mean observed runoff of plot (mm)

Q c :

Predicted runoff (mm)

CN0.20 :

Curve number associated with λ = 0.20

CN0.030 :

Curve number associated with λ = 0.030

NEH:

National engineering handbook

NSE:

Nash-Sutcliffe efficiency coefficient

CNHT :

Curve number derived from NEH-4 tables

S :

Maximum potential retention (mm)

θ :

Previous day soil moisture (%)

HSG:

Hydrologic soil group

P 5 :

5-day antecedent rainfall (mm)

fc:

Infiltration capacity (mm/hr)

CNLSn :

Curve number derived from P–Q data set using least square method (λ = 0.2) for natural data series

CNLSo :

Curve number derived from P–Q data set using least square method (λ = 0.2) for ordered data series

CNLSDn :

Curve number derived from P–Q data set using least square method (optimized λ) for natural data series

CNLSDo :

Curve number derived from P–Q data set using least square method (optimized λ) for ordered data series

CNHT0.20 :

NEH-4 tables CN associated with λ = 0.20

CNHT0.030 :

NEH-4 tables CN associated with λ = 0.03

I :

Rainfall threshold for runoff generation (mm)

n :

Number of event (or observation)

n t :

Statistic used for performance evaluation

r :

Statistic used for showing the improvement in NSE

R 2 :

Coefficient of determination

RMSE:

Root mean square error (mm)

PBIAS:

Percent bias (%)

SD:

Standard deviation (mm)

SPSS:

Statistical Package for the Social Sciences

SE:

Standard error of estimate (mm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, M., Mishra, S.K., Pandey, A. et al. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeol J 25, 151–167 (2017). https://doi.org/10.1007/s10040-016-1460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1460-5

Keywords

Navigation