Skip to main content

Advertisement

Log in

Review: Hydraulics of water wells—head losses of individual components

Revue: Hydraulique des puits—pertes de charge des différents composants

Revisión: Hidráulica de pozos de agua—componentes individuales de las pérdidas de carg

评论:水井的水力学—单个组分的水头损失

Revisão: Hidráulica de poços d’água—perdas de carga de componentes individuais

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Knowledge about the hydraulics of water wells is important to optimize their energy efficiency. By minimizing head losses around the well, energy consumption and ageing processes can be limited, thereby prolonging the well’s service life. The contribution of the individual components to total head loss (drawdown) in the well is analyzed in detail. The single most important contributor to drawdown is commonly the aquifer. Its hydraulic conductivity can only be improved slightly through development. The second most important contributor is the formation of a wellbore skin layer. This occurs if no proper well development was performed after drilling; the layer contains remnants of drilling-fluid additives or mobilized fine aquifer particles. The head loss caused by groundwater flow in the gravel pack, through the screen slots and inside the well, was found to be small. Thus, well development is the most important measure to influence well performance and energy efficiency. For longer operation times and pumped volumes, the energy gains outperform the cost for the development.

Résumé

La connaissance en matière d’hydraulique des puits est importante pour optimiser leur efficacité énergétique. En réduisant les pertes de charge autour du puits, la consommation d’énergie et les phénomènes de vieillissement peuvent être limités, prolongeant ainsi la durée de vie de l’ouvrage. La contribution des différents composants dans la perte de charge globale (rabattement) dans le puits est analysée en détail. Le facteur le plus important à l’origine du rabattement est généralement l’aquifère. Le 2ème facteur le plus important est la formation d’un effet de paroi autour du puits. Cela se produit si un développement du puits n’est pas réalisé correctement à l’issue du forage. La paroi du forage contient les résidus d’additifs du fluide de forage ou des particules fines issues de l’aquifère. Les pertes de charge créées par l’écoulement d’eau souterraine dans le massif filtrant, à travers les fentes de la crépine et à l’intérieur du puits ont été jugées assez faibles. Ainsi, le développement du puits est la mesure la plus importante pour agir sur la performance et l’efficacité énergétique. Pour des temps d’exploitation et des volumes de pompage conséquents, les gains d’énergie surpassent le coût du développement.

Resumen

El conocimiento de la hidráulica de los pozos de agua es importante para optimizar la eficiencia de energía. Al minimizar las pérdidas de carga del pozo, el consumo de energía y los procesos de envejecimiento pueden ser limitados, prolongando así la vida útil de los pozos. Se analiza en detalle la contribución de los componentes individuales a la pérdida total de carga hidráulica (reducción) en el pozo. El factor individual que más contribuye a la reducción de la carga hidráulica comúnmente es el acuífero. Su conductividad hidráulica sólo puede mejorarse ligeramente a través del desarrollo. El segundo factor más importante es la formación de una capa de revestimiento en el pozo. Esto sucede si no hay un desarrollo adecuado después de ejecutarse la perforación; la capa contiene restos de aditivos de los fluidos de perforación o de partículas finas movilizadas en el acuífero. Se encontró que la pérdida de carga causada por el flujo del agua subterránea en el empaque de grava, a través de las ranuras del filtro y el interior del pozo era pequeña. Por lo tanto, el desarrollo del pozo es el aspecto más importante que influye en el rendimiento del pozo y en la eficiencia de la energía. Para mayores tiempos de funcionamiento y volúmenes bombeados, las ganancias de energía superan el costo del desarrollo.

摘要

水井水力学知识对优化其能量效率非常重要。通过最小化井周围的水头损失,可以限制能量消耗和老化过程,从而延长井的使用寿命。本文详细分析了单个组分对水井中总水头损失 (水位降落)的贡献。对水位降深最重要的单个贡献者通常是含水层。通过建井工程其水力传导性只能稍微改善。第二个最重要的贡献者是钻井孔表层的形成。如果钻进后没有进行适当的建井工程,表层就会出现;钻孔表层保留着残余的钻进液体添加剂或松动的细小含水层颗粒。发现过滤填料中通过滤水管开槽的地下水流及水井内中的地下水流造成的水头损失很小。因此,建井工程是影响井性能和能量效率的最重要措施。对于较长运行时间和抽取的水量,能量增益胜过建井工程的成本。

Resumo

Conhecimento a respeito da hidráulica de poços d’água é importante para otimizar sua eficiência energética. Através da minimização das perdas de carga ao redor do poço, o consumo de energia e os processos de deterioração podem ser limitados, prolongando assim a vida útil do poço. A contribuição de componentes individuais à perda de carga total (rebaixamento) em um poço é analisada em detalhe. O mais importante contribuinte individual para o rebaixamento é geralmente o aquífero. Sua condutividade hidráulica só pode ser ligeiramente melhorada através do desenvolvimento. O segundo contribuinte mais importante é a formação de uma camada de revestimento do poço. Isso ocorre se nenhum desenvolvimento bem adequado foi realizado após a perfuração; a camada contém restos de aditivos do fluido de perfuração ou partículas finas do aquífero mobilizadas. A perda de carga causada pelo fluxo das águas subterrâneas no pacote de cascalho, através das ranhuras do filtro e dentro do poço foi pequena. Assim, o desenvolvimento do poço é a medida mais importante para influenciar o desempenho do poço e eficiência energética. Para maiores tempos de operação e volumes bombeados, os ganhos de energia superam o custo para o desenvolvimento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • ADITCL (Australian Drilling Industry Training Committee Ltd) (1996) Drilling: the manual of methods, applications, and management. Lewis, Boca Raton, FL

    Google Scholar 

  • Arnold W (1993) Flachbohrtechnik [Shallow drilling techniques]. Deutscher Verlag für Grundstoffindustrie, Leipzig, Germany

    Google Scholar 

  • Bakiewicz W, Milne DM, Pattle AD (1985) Development of public tubewell designs in Pakistan. Q J Eng Geol Hydrogeol 18:63–77

    Article  Google Scholar 

  • Barker JA, Herbert R (1992a) Hydraulic tests on well screens. Appl Hydrogeol 0/92:7–19

  • Barker JA, Herbert R (1992b) A simple theory for estimating well losses: with application to test wells in Bangladesh. Appl Hydrogeol 0/92:20–31

  • Barrash W, Clemo T, Fox JJ, Johnson TC (2006) Field, laboratory, and modeling investigation of the skin effect at wells with slotted casing, Boise Hydrogeophysical Research Site. J Hydrol 326:181–198

    Article  Google Scholar 

  • Blair AH (1970) Well screens and gravel packs. Ground Water 8(1):10–21

    Article  Google Scholar 

  • Boulton NS (1947) Discussion In: Jacob CE (ed) Drawdown test to determine the effective radius of artesian wells. Trans Am Soc Civ Eng 112:1065–1066

  • Chen C, Jiao JJ (1999) Numerical simulation of pumping tests in multilayer wells with non-Darcian flow in the wellbore. Ground Water 37(3):465–474

    Article  Google Scholar 

  • Clark L, Turner PA (1983) Experiments to assess the hydraulic efficiency of well screens. Ground Water 21(3):270–281

    Article  Google Scholar 

  • Cooley RL, Cunningham AB (1979) Consideration of total energy loss in theory of flow to wells. J Hydrol 43:161–184

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27(4):526–534

    Article  Google Scholar 

  • Corey GL (1949) Hydraulic properties of well screens. MSc Thesis, Colorado State University, Fort Collins, USA

  • Domenico PA, Schwartz FW (1996) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Driscoll FG (1986) Groundwater and wells, 2nd edn. Johnson Division, St. Paul, MN

    Google Scholar 

  • Earlougher RC (1977) Advances in well test analysis. Monograph series, vol 5. Society of Petroleum Engineers of AIME, Dallas, TX

    Google Scholar 

  • Eden RN, Hazel CP (1973) Computer and graphical analysis of variable discharge pumping test of wells. Civil Eng. Trans. Inst. Eng. Aust. pp 5–10

  • Engelund F (1953) On the laminar and turbulent flow of groundwater through homogeneous sands. Akademiet for de Tekniske Videnskaber, Copenhagen

    Google Scholar 

  • Forchheimer P (1901a) Wasserbewegung durch Boden [Movement of water through soil]. Z Ver Dtsch Ing 45:1736–1741

    Google Scholar 

  • Forchheimer P (1901b) Wasserbewegung durch Boden [Movement of water through soil]. Z Ver Dtsch Ing 50:1781–1788

    Google Scholar 

  • Garg SP, Lal J (1971) Rational design of well screens. J Irrig Drain Div 97(1):131–147

    Google Scholar 

  • Gülich JF (2014) Centrifugal pumps. Springer, Berlin

    Book  Google Scholar 

  • Hamill L (2001) Understanding hydraulics, 2nd edn. Palgrave, Basingstoke, UK

    Google Scholar 

  • Hazen A (1911) Discussion of “Dams on sand formations”, by A. C. Koenig. Trans Am Soc Civ Eng 73:199–203

    Google Scholar 

  • Horn JE, Harter T (2009) Domestic well capture zone and influence of the gravel pack length. Ground Water 47(2):277–286

    Article  Google Scholar 

  • Houben G (2006) The influence of well hydraulics on the spatial distribution of well incrustations. Ground Water 44(5):668–675

    Google Scholar 

  • Houben G (2015) Review: Hydraulics of water wells—flow laws and influence of geometry. Hydrogeol J doi:10.1007/s10040-015-1312-8

  • Houben G, Hauschild S (2011) Numerical modelling of the near-field hydraulics of water wells. Ground Water 49(4):570–575

    Article  Google Scholar 

  • Houben G, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw Hill, New York

    Google Scholar 

  • Houben G, Weihe U (2010) Spatial distribution of incrustations around a water well after 38 years of use. Ground Water 48(5):53–58

    Article  Google Scholar 

  • Hübner M (2011) Moderne Anlagentechnik für eine energieeffizientere Wasserversorgung [Modern installation engineering for energy-efficient water supply]. Bohrtechn Brunnenb Rohrlb 62(12):72–78

    Google Scholar 

  • Jacob CE (1947) Drawdown test to determine effective radius of artesian well. Trans Am Soc Civ Eng 112:1047–1070

    Google Scholar 

  • Karrasik I, McGuire JT (1998) Centrifugal pumps. Chapman and Hall, New York

    Google Scholar 

  • Kim BW (2014) Effect of filter designs on hydraulic properties and well efficiency. Ground Water 52:175–185

    Article  Google Scholar 

  • Klammler H, Nemer B, Hatfield K (2014) Effect of injection screen slot geometry on hydraulic conductivity tests. J Hydrol 511:190–198

    Article  Google Scholar 

  • Klauder W (2010) Experimentelle Untersuchung der Anströmung von Vertikalfilterbrunnen [Experimental investigations of flow to vertical screened wells]. PhD Thesis, RWTH Aachen University, Aachen, Germany

  • Klotz D (1971) Untersuchung von Grundwasserströmungen durch Modellversuche im Maßstab 1:1 [Study of groundwater flow through model experiments at the 1.1 scale]. Geologica Bavarica 64:75–119

    Google Scholar 

  • Klotz D (1990) Berechnete Durchlässigkeiten handelsüblicher Brunnenfilterrohre und Kunststoff-Kiesbelagfilter [Computed conductivity of commercially available well screen tubes and resin-bound gravel packs]. GSF-Bericht 35/90, GSF, Munich, Germany

  • Korom SF, Bekker KF, Helweg O (2003) Influence of pump intake location on well efficiency. J Hydrol Eng 8(4):197–203

    Article  Google Scholar 

  • Kroening DE, Snipes DS, Brame SE, Hodges RA, Price V, Temples TJ (1996) The rehabilitation of monitoring wells clogged by calcite precipitation and drilling mud. Groundwater Monit Remediat 6(2):114–123

    Article  Google Scholar 

  • Labadie JW, Helweg OJ (1975) Step-drawdown test analysis by computer. Ground Water 13(5):438–444

    Article  Google Scholar 

  • Lobanoff VS, Ross RR (1992) Centrifugal pumps: design and application. Gulf Publ., New York

    Google Scholar 

  • Moench AF (1984) Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour Res 20(7):831–846

    Article  Google Scholar 

  • Moody LF (1944) Friction factors for pipe flow. Trans Am Soc Mech Eng 66(8):671–684

    Google Scholar 

  • Obnosov Y, Kasimova R, Al-Maktoumi A, Kacimov A (2010) Can heterogeneity of the near-wellbore rock cause extrema of the Darcian fluid inflow rate from the formation (the Polubarinova-Kochina problem revisited)? Comp Geosc 36:1252–1260

    Article  Google Scholar 

  • Parsons SB (1994) A re-evaluation of well design procedures. Q J Eng Geol 27:S31–S40

    Article  Google Scholar 

  • Plath M, Wichmann K, Peters G (2011) Energieeffizienz und Wirtschaftlichkeit in der Wasserversorgung [Energy efficiency and cost effectiveness in water supply]. Bohrtechn Brunnenb Rohrlb 62(5):60–65

    Google Scholar 

  • Rishel JB (2002) Water pumps and pumping systems: water/wastewater treatment applications. McGraw Hill, New York

    Google Scholar 

  • Roscoe Moss Company (1990) Handbook of ground water development. Wiley, New York

    Book  Google Scholar 

  • Saucier RJ (1974) Considerations in gravel pack design. J Petrol Technol 26:205–212

    Article  Google Scholar 

  • Sichardt W (1928) Das Fassungsvermögen von Rohrbrunnen und seine Bedeutung für die Grundwasserabsenkung, insbesondere für größere Absenkungstiefen [The water intake capacity of tube wells and its importance for the lowering of groundwater level, especially for higher drawdowns]. Springer, Berlin

  • Singh SR, Shakya SK (1989) A nonlinear equation for groundwater entry into well screens. J Hydrol 109:95–114

    Article  Google Scholar 

  • Snow DT (1968) Rock fracture spacings, openings, and porosity. J Soil Mech Found Div 94:73–91

    Google Scholar 

  • Sterrett RJ (2007) Groundwater and wells, 3rd edn. Johnson Screens, New Brighton, PA

    Google Scholar 

  • Thiem G (1906) Hydrologische Methoden [Hydrological methods]. PhD Thesis, University of Stuttgart, Stuttgart, Germany

  • Van Beek CGEM, Breedveld RJM, Juhász-Holterman M, Oosterhof A, Stuyfzand PJ (2009) Cause and prevention of well bore clogging by particles. Hydrogeol J 17(8):1877–1886

    Article  Google Scholar 

  • van Everdingen AF (1953) The skin effect and its influence in the productive capacity of a well. Petroleum Trans 198:171–176

    Article  Google Scholar 

  • Von Hofe F, Helweg OJ (1998) Modeling well hydrodynamics. J Hydrol Eng 124(12):1198–1202

    Article  Google Scholar 

  • Weisbach J (1845) Lehrbuch der Ingenieur- und Maschinen-Mechanik [Textbook of engineering and machine mechanics]. Friedrich Vieweg, Braunschweig, Germany

    Google Scholar 

  • Wendling G, Chapuis RP, Gill DE (1997) Quantifying the effects of well development unconsolidated material. Ground Water 35(3):387–393

    Article  Google Scholar 

  • Williams DE (1985) Modern techniques in well design. J Am Water Work Assoc 77(9):68–74

    Google Scholar 

  • Yang YJ, Gates TM (1997) Wellbore skin effect in slug-test data analysis for low-permeability geologic materials. Water Resourc Res 35(6):931–937

    Google Scholar 

  • Young SC (1998) Impacts of positive skin effects on borehole flowmeter tests in a heterogeneous granular aquifer. Ground Water 36(1):67–75

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Christoph Weidner and Lisa Brückner for a thorough pre-review and RWE Power AG Access for providing access to wellbore skin samples. The constructive reviews by Paul Hsieh and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg J. Houben.

Additional information

This article (one of a pair) is in the Foundations series, comprised of pedagogical reviews of hydrogeologic subjects

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 7680 kb)

Appendix

Appendix

Notation

a f :

frictional head loss factor screen

a j :

joint coefficient (a j = 2 for box and pin joints, a j = 1.5 for nipple joints)

a sl :

longer side length of rectangular slot (L)

A :

area (L2)

A o :

open area (open area / total area) × 100 (%)

A p :

fractional open area (open area / total area)

A sc :

area of screen pipe (L2)

A sl :

area of screen slots (L2)

b aq :

thickness of aquifer (L)

b gp :

thickness of gravel pack (L)

b i :

thickness of individual layer (L)

b m :

momentum head loss factor screen

b sk :

thickness of skin layer (L)

b sl :

shorter side length of rectangular slot (L)

b tot :

total thickness (sum of individual layers) (L)

B :

full aquifer thickness (L)

C :

constant (numerical value)

C c :

coefficient of contraction, typically ≈ 0.6

C CT :

fit parameter used by Clark and Turner (1983) (L−1/T−2)

C sl :

circumference of screen slot (L)

C v :

velocity coefficient ≈ 0.98 for slots

d :

diameter (L)

d 1, d 2 :

diameter of tube sections (d1 < d2) (L)

d gp-in :

thickness inner gravel pack (L)

d gp-out :

thickness outer gravel pack (L)

d j :

inner diameter of joint (L)

d p :

(inner) diameter of pipe (L)

d rd1 :

upstream internal diameter of reducer (L)

d rd2 :

downstream internal diameter of reducer (L)

d s :

diameter of screen (L)

d s-o :

outer diameter of screen (L)

d sk :

thickness of skin layer (L)

d sw :

screen wall thickness (L)

DFP:

dual filter pack

f j :

friction factor of joint

f p :

friction factor of pipe section

f D :

Darcy friction factor (= 4 × Fanning friction factor)

f r :

surface roughness of slots (f ≥ 1)

F s :

skin factor

g :

acceleration of gravity (gravitational constant) (L2/T)

kW:

kilowatt (0.746 kW = 1 horsepower (electrical), 1 W = 0.00136 hp)

K :

hydraulic conductivity (L/T)

K aq :

hydraulic conductivity of aquifer (L/T)

K gp :

hydraulic conductivity of gravel pack (L/T)

K i :

hydraulic conductivity of individual layer (L/T)

K s :

hydraulic conductivity of screen (L/T)

K sk :

hydraulic conductivity of skin layer (L/T)

K tot :

hydraulic conductivity of all layers (L/T)

kWh:

kilowatt hour (=3.6 Mega-Joule)

l sl :

length of individual screen slot (L)

L :

length, usually of low path (L)

L c :

length of casing section (L)

L p :

length of pipe (L)

L s :

length of screen (L)

n :

number (e.g., of layers)

n c :

number of vertical slots around circumference of screen

n j :

number of joints

n rd :

number of reducers (joints)

n s :

number of slots per length (L−1)

n se :

number of pipe sections

p :

pressure (M/L · T2)

p j :

pressure in pipe joint (M/L · T2)

P gros :

gross (electrical) power consumption (M · L2 · T−3)

P net :

net (electrical) power consumption (M · L2 · T−3)

q :

Q/A = specific discharge (Darcy velocity) (L/T)

Q :

pumping rate, well discharge (L3/T)

r :

radius (L)

r 0 :

radius of cone of depression = radial distance from well center to location where drawdown is zero (L)

r b :

radius borehole, drilling diameter (L)

r crit :

critical radius (L)

r gp :

radius gravel pack (radial thickness) (L)

r gp-i :

radius from center of the well to inner edge of gravel pack (L)

r gp-o :

radius from center of the well to outer edge of gravel pack (L)

r h :

hydraulic radius screen (L)

r s :

radius screen (L)

r s-in :

inner radius screen pipe (L)

r s-out :

outer radius screen pipe (L)

r sk :

radius skin layer (radial thickness) (L)

r sk-i :

radius from center of the well to inner edge of skin layer (L)

r sk-o :

radius from center of the well to outer edge of skin layer (L)

Re:

Reynolds number

s :

head loss or drawdown (L)

s aq :

head loss aquifer (L)

s cv :

head loss convergence (L)

s gp :

head loss gravel pack (L)

s gp-in :

head loss inner gravel pack (L)

s gp-out :

head loss outer gravel pack (L)

s gp′ :

head loss interface between inner and outer gravel pack (L)

s in :

head loss at inlet of tube (L)

s out :

head loss at outlet of tube (L)

s sc :

head losses screen (L)

s sk :

head loss skin layer (L)

s tot :

total head loss or drawdown (m)

s up :

total head loss or drawdown (m)

S :

storage coefficient

SFP:

single filter pack

t :

time (T)

T :

K/b = aquifer transmissivity (L2/T)

V :

velocity of flow (L/T)

v 1 etc.:

flow velocity at location x = 1 etc. (L/T)

v cs :

flow velocity in casing (but not in joint) (L/T)

v crit :

critical entrance velocity (L/T)

v e :

entrance velocity (L/T)

v f :

flow velocity in pipe (L/T)

w s :

screen slot width (aperture) (L)

w w :

width of outside wrapping wire (for wire-wound screens) (L)

y :

exponent

β*:

inertial factor or Forchheimer coefficient

δ :

slot/distance ratio

ζ rd :

loss coefficient for reducer

η p :

efficiency of pump system

κ :

equivalent surface roughness (L)

μ :

dynamic viscosity of water (M/L · T)

ν :

kinematic viscosity (L2/T)

ρ :

density (of water, if not stated otherwise) (M/L3)

σ :

roughness coefficient (T2/L2/3)

Ω s :

resistance coefficient screen

Ω sl :

resistance coefficient screen slots

Ψ :

(1 – d 1 2/d 2 2)2

Constants

g :

9.81 m/s2

ρ :

ρ w = 1000 kg/m3

μ :

0.001 kg/s · m

ν :

1.01 · 10−6 m2/s

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houben, G.J. Review: Hydraulics of water wells—head losses of individual components. Hydrogeol J 23, 1659–1675 (2015). https://doi.org/10.1007/s10040-015-1313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1313-7

Keywords

Navigation