Skip to main content
Log in

An in-well heat-tracer-test method for evaluating borehole flow conditions

Une méthode d’essai de traceur par chaleur pour évaluer les conditions d’écoulement dans un forage

Un método de ensayo de trazador de calor dentro del pozo para la evaluación de las condiciones de flujo en las perforaciones

井内热量示踪实验方法评价钻孔水流条件

Um método de ensaio com traçadores de calor para avaliação das condições de fluxo em poços

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

Résumé

Une méthode améliorée est présentée pour caractériser les conditions d’écoulement vertical en forage ouvert en utilisant des tests de traçage à la chaleur par un système (DTS) de suivi de la température de manière distribuée. Cette méthode d’enregistrement du flux utilise un appareil chauffant à résistance électrique afin de chauffer des masses d’eau des forages en trou nu dans la roche, ainsi que le suivi DTS de la migration provoquée de la chaleur afin de mesurer les caractéristiques d’écoulement du forage. L’utilisation d’un appareil chauffant à résistance électrique permet le contrôle de l’initiation des tests alors que le DTS permet un suivi détaillé du mouvement de la chaleur au sein du forage. La méthode a été évaluée dans des forages en trou nu dans la roche interceptant les formations des grés du Cambrien dans le Wisconsin central du Sud (Etats-Unis d’Amérique). La méthode a été utilisée avec succès pour mesurer les écoulements ascendants, descendants et les flux nuls, et pour identifier les modifications dans le forage des vitesses d’écoulement associées aux écoulements de fracture et de milieu poreux. Les principaux avantages de la méthode d’essais de traçage par chaleur en puits suivi par DTS pour l’enregistrement des écoulements en forage sont (1) la direction d’écoulement en forage et les changements de vitesses du fluide en forage sont évidents à partir d’un simple graphique de données de terrain, (2) le cas d’un écoulement vertical nul en forage est facilement et en toute certitude identifié, et (3) la possibilité de mesurer les températures sur toute la longueur d’un forage de manière simultanée et répétée rapidement fournit des données détaillées de flux avec une perturbation minimale sur l’écoulement dans le forage. Les résultats de cette étude indiquent que les tests de traçage à la chaleur en forage suivi par DTS constituent une méthode efficace pour caractériser les conditions d’écoulement en forage.

Resumen

Se presenta un método mejorado para caracterizar de las condiciones de flujo vertical en pozos abiertos utilizando pruebas con trazadores de calor dentro del pozo monitoreados por un sistema distribuido de detección de temperatura (DTS). Este método de registro de flujo utiliza un calefactor de resistencia eléctrica para calentar volúmenes de agua dentro de pozos en la roca de base y el monitoreo DTS de la migración de calor posterior para medir las características de flujo en el pozo. El uso de un calefactor de resistencia eléctrica permite el control de la iniciación de la prueba mientras que el DTS permite un seguimiento detallado del movimiento de calor dentro del pozo. El método se evaluó en los pozos de la roca de base abiertos en formaciones de arenisca del Cámbrico en el centro-sur de Wisconsin (EE.UU.). El método se utilizó con éxito para medir el flujo ascendente, el flujo descendente y el flujo nulo, y para identificar cambios en las tasas de flujo del pozo asociados con el flujo en fracturas y el flujo en el medio poroso. Las principales ventajas del método de las pruebas con trazadores de calor los monitoreados con DTS en pozos para el registro del flujo en la perforación son (1) la dirección del flujo y los cambios en la velocidad del fluido en el pozo son evidentes rápidamente a partir de un diagrama simple de los datos de campo, (2) el caso de un flujo vertical nulo en el pozo es fácilmente y confiablemente identificado, y (3) la capacidad para monitorear las temperaturas superiores a través de la longitud total del pozo de forma simultánea y con una rápida sucesión proporciona datos detallados de flujo con una mínima perturbación del flujo en el pozo. Los resultados de este estudio indican que las pruebas de monitoreo DTS en pozos por ensayos de trazadores de calor son un método efectivo para caracterizar las condiciones de flujo en el pozo.

摘要

本文展示了通过由分散热敏系统监测的井内热量示踪实验描述垂直钻孔水流条件特征的改进方法。这个水流记录方法采用电阻加热器加热基岩钻孔内的水管及开展随后热量迁移的分散热敏系统监测,测量钻孔水流特征。采用电阻加热器可以启动控制实验,而分散热敏系统可以详细监测钻孔内的热量运移。在(美国)威斯康星州中南部寒武砂岩层基岩钻孔中对该方法进行了评估。成功利用该方法测量了上向流量、下向流量和零流量,并确定了与断裂水流和孔隙介质水流相关的钻孔水流的变化。分散热敏系统监测的钻孔水流记录井内热量示踪试验方法的主要好处是:(1)从现场资料的简单标绘上就能很容易看清楚钻孔水流方向和钻孔流体速度变化;(2)垂直钻孔零流量的情况很容易并且毫无悬念地确定;(3)同时接连不断监测整个钻孔上的温度的能力提供了钻孔水流受到最小干扰的详细水流资料。本研究结果表明,分散热敏系统监测的井内热量示踪试验方法是描述钻孔水流条件特征的有效方法。

Resumo

Um método aperfeiçoado é apresentado para caracterizar as condições de fluxo vertical em poços não revestidos usando ensaios com traçadores de calor em poços monitorados por um sistema de sensoriamento de temperatura distribuidos (STD). Este método de registro de fluxo emprega um aquecedor com resistência elétrica para aquecer parcelas de água em poços não revestidos em rocha e por meio do monitoramento do STD da subsequente mudança térmica para avaliar as características de fluxo no poço. A utilização de um aquecedor de resistência eléctrica permite iniciar o teste, enquanto o STD permite monitorar detalhadamente o movimento de calor no interior do poço. O método foi avaliado em poços sem revestimento perfurados em arenitos cambrianos da região centro-sul de Wisconsin (EUA). O método foi utilizado com sucesso para medir o fluxo ascendente, o fluxo descendente, a ausência de fluxo e para identificar as alterações nas taxas de fluxo nos poços associadas ao fluxo nas fraturas e no meio poroso. Os principais benefícios do método de monitoramento pelo STD em testes de traçadores de calor em poços abertos: (1) a direção do fluxo e mudanças na velocidade do fluido no interior do poço são facilmente visíveis a partir da plotagem dos dados de campo, (2) a ausência de fluxo vertical no interior do poço é identificada de modo fácil e confiavel, e (3) a capacidade de monitorar as temperaturas ao longo da extensão do poço simultaneamente e em rápida sucessão, fornece dados detalhados de fluxo com o mínimo de perturbação no fluxo do poço. Os resultados deste estudo indicam que o monitoramento de pelo STD em testes de traçadores de calor em poços abertos são um método eficaz de caracterização das condições do fluxo em poços abertos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson KM (2002) Hydrogeologic controls on flow to Frederick Springs in the Pheasant Branch Watershed, Middleton, Wisconsin. MSc Thesis, University of Wisconsin, Madison, WI

    Google Scholar 

  • Aswasereelert W, Simo JA, LePain DL (2008) Deposition of the Cambrian Eau Claire Formation, Wisconsin: hydrostratigraphic implications of fine-grained cratonic sandstones. Geosci Wis 19(1):1–21

    Google Scholar 

  • Banks EW, Shanafield MA, Cook PG (2014) Induced temperature gradients to examine groundwater flowpaths in open boreholes. Ground Water 52(6):943–951

    Article  Google Scholar 

  • Bird JR, Dempsey JC (1955) The use of radioactive tracer surveys in water-injection wells. Kentucky Geological Survey Spec. Pub. 8, pp 44–54

    Google Scholar 

  • Bradbury KR, Swanson SK, Krohelski JT, Fritz AK (1999) Hydrogeology of Dane County, Wisconsin. Wisconsin Geol Nat Hist Surv Open-File Rep 1999–04

    Google Scholar 

  • Byers CW (1978) Depositional environments of fine-grained upper Cambrian lithofacies. In: Lithostratigraphy, petrology, and sedimentology of Late Cambrian–Early Ordovician rocks near Madison, Wisconsin. University of Wisconsin–Extension Geological and Natural History Survey Field Trip Guide Book no. 3, Univ. of Wisconsin, Madison, WI

  • Cline DR (1965) Geology and ground-water resources of Dane County, Wisconsin. US Geol Surv Water Suppl Pap 1779-U

    Google Scholar 

  • Dott RH Jr (1978) Sedimentology of upper Cambrian cross-bedded sandstone facies as exemplified by the Van Oser Sandstone. In: Lithostratigraphy, petrology, and sedimentology of Late Cambrian–Early Ordovician rocks near Madison, Wisconsin. University of Wisconsin–Extension Geological and Natural History Survey Field Trip Guide Book no. 3, Univ. of Wisconsin, Madison, WI

  • Dott RH Jr, Byers CW, Fielder GW, Stenkzel SR, Winfree KE (1986) Aeolian to marine transition in Cambro-Ordovician cratonic sheet sandstones of the northern Mississippi Valley, USA. Sedimentology 33(3):345–367

    Article  Google Scholar 

  • Fiedler AG (1927) The Au deep-well current meter and its use in the Roswell artesian basin, New Mexico. In: Methods of exploring and repairing leaky artesian wells. US Geol Surv Water Supply Pap 596-A, pp 24–32

  • Gellasch CA, Bradbury KR, Hart DJ, Bahr JM (2013) Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public supply well (Wisconsin, USA). Hydrogeol J 21(2):383–399

    Article  Google Scholar 

  • Gellasch CA, Wang HF, Bradbury KR, Bahr JM, Lande LL (2014) Reverse water-level fluctuations associated with fracture connectivity. Ground Water 52(1):105–117

    Article  Google Scholar 

  • Hess AE (1982) A heat-pulse flowmeter for measuring low velocities in boreholes. US Geol Surv Open-File Rep 82-699

  • Hess AE (1986) Identifying hydraulically conductive fractures with a slow-velocity borehole flowmeter. Can Geotech J 23(1):69–78

    Article  Google Scholar 

  • Keys WS, Sullivan JK (1979) Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho. Geophysics 44(6):1116–1141

    Article  Google Scholar 

  • Krohelski JT, Bradbury KR, Hunt RJ, Swanson SK (2000) Numerical simulation of groundwater flow in Dane County, Wisconsin. Wisconsin Geol Nat Hist Surv Bull 98

    Google Scholar 

  • Leaf AT, Hart DJ, Bahr JM (2012) Active thermal tracer tests for improved hydrostratigraphic characterization. Ground Water 50(5):726–735

    Article  Google Scholar 

  • Liu G, Knobbe S, Butler JJ Jr (2013) Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophys Res Lett 40:1098–1103. doi:10.1002/grl.50282

    Article  Google Scholar 

  • Marine IW (1980) Determination of the location and connectivity of fractures in metamorphic rock with in-hole tracers. Ground Water 18(3):252–261

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56(1):27–44

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high-resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507. doi:10.1016/j.jhydrol.2014.05.050

    Article  Google Scholar 

  • Molz FJ, Morin RH, Hess AE, Melville JG, Güven O (1989) The impeller meter for measuring aquifer permeability variations: evaluation and comparison with other tests. Water Resour Res 25(7):1677–1683

    Article  Google Scholar 

  • Molz FJ, Boman GK, Young SC, Waldrop WR (1994) Borehole flowmeters: field application and data analysis. J Hydrol 163(3–4):347–371

    Article  Google Scholar 

  • Odom IE (1978) Lithostratigraphy and sedimentology of the Lone Rock and Mazomanie Formations, Upper Mississippi Valley. In: Lithostratigraphy, petrology, and sedimentology of Late Cambrian–Early Ordovician rocks near Madison, Wisconsin, University of Wisconsin–Extension Geological and Natural History Survey Field Trip Guide Book no. 3, Univ. of Wisconsin, Madison, WI

    Google Scholar 

  • Odom IE, Ostrom ME (1978) Lithostratigraphy, petrology, sedimentology, and depositional environments of the Jordan Formation near Madison, Wisconsin. In: Lithostratigraphy, petrology, and sedimentology of Late Cambrian–Early Ordovician rocks near Madison, Wisconsin. University of Wisconsin–Extension Geological and Natural History Survey Field Trip Guide Book no. 3, Univ. of Wisconsin, Madison, WI

    Google Scholar 

  • Ostrom ME (1978) Stratigraphic relationships of lower Paleozoic rocks of Wisconsin. In: Lithostratigraphy, petrology, and sedimentology of Late Cambrian–Early Ordovician rocks near Madison, Wisconsin, University of Wisconsin–Extension Geological and Natural History Survey Field Trip Guide Book no. 3, Univ. of Wisconsin, Madison, WI

  • Patten EP Jr, Bennett GD (1962) General ground-water techniques. US Geol Surv Water Supply Pap 1544-C

    Google Scholar 

  • Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV, Hochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing. Geophys Res Lett 40(1–5). doi: 10.1002/grl.50397

  • Read T, Bour O, Selker JS, Bense VF, Le Borgne T, Hochreutener R, Lavenant N (2014) Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resour Res 50(5):3706–3713

    Article  Google Scholar 

  • Runkel AC, McKay RM, Palmer AR (1998) Origin of a classic cratonic sheet sandstone: stratigraphy across the Sauk II–Sauk III boundary in the Upper Mississippi Valley. Geol Soc Am Bull 110(2):188–210

    Article  Google Scholar 

  • Runkel A, Tipping R, Alexander E, Alexander S (2006) Hydrostratigraphic characterization of intergranular and secondary porosity in part of the Cambrian sandstone aquifer system of the cratonic interior of North America: improving predictability of hydrogeologic properties. Sediment Geol 184(3–4):281–304

    Article  Google Scholar 

  • Sammel EA (1968) Convective flow and its effect on temperature logging in small-diameter wells. Geophysics 33(6):1004–1012

    Article  Google Scholar 

  • Swanson SK (2007) Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin. Sediment Geol 197(1–2):65–78

    Article  Google Scholar 

  • Swanson SK, Bahr JM (2004) Analytical and numerical models to explain steady rates of spring flow. Ground Water 42(5):747–759

    Article  Google Scholar 

  • Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in southern Wisconsin. Sediment Geol 184(3–4):331–342

    Article  Google Scholar 

  • Tyler SW, Selker JS, Hausner MB, Hatch CE, Torgersen T, Thodal CE, Schladow SG (2009) Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour Res 45(4). doi: 10.1029/2008WR007052

  • WGNHS (2015) Data: porosity and density measurements. http://wgnhs.uwex.edu/maps-data/data/rock-properties/porosity-density-measurements-data/. Accessed 27 January 2015

    Google Scholar 

  • Young SC, Pearson HS (1995) The electromagnetic borehole flowmeter: description and application. Ground Water Monit Rem 15(4):138–147

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the University of Wisconsin Water Resources Institute through the Wisconsin Groundwater Research and Monitoring Program (grant WR12R001), and by a Geological Society of America Student Research Grant. The DTS instrument and instrument support were provided by the Center for Transformative Environmental Monitoring Programs (www.ctemps.org). The electrical resistance heaters used in this study were fabricated by Neal Lord and Peter Sobol of the University of Wisconsin – Madison Department of Geoscience. Field work assistance was provided by numerous employees of the Wisconsin Geological and Natural History Survey. Finally, the authors thank Tom Read and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Sellwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellwood, S.M., Hart, D.J. & Bahr, J.M. An in-well heat-tracer-test method for evaluating borehole flow conditions. Hydrogeol J 23, 1817–1830 (2015). https://doi.org/10.1007/s10040-015-1304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1304-8

Keywords

Navigation