Skip to main content
Log in

Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China

Subsidence et soulèvement des terrains en raison de l’exploitation de l’eau souterraine sur le long terme et de la recharge artificielle à Shanghai, Chine

Subsidencia y elevación del terreno a largo plazo debido a la extracción de aguas subterráneas y a la recarga artificial en Shanghai, China

长期开采地下水及人工回灌条件下上海(中国)地面下沉和回升

Subsidência e soerguimento de terreno devido à extração de águas subterrâneas em longo prazo e à recarga artificial em Xangai, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Increasing artificial water recharge and restriction on groundwater pumpage have caused land displacements in Shanghai (China) to shift from subsidence to uplift. On the basis of field and laboratory data, the characteristics and mechanism of land subsidence and uplift are analyzed and discussed. Under the condition of long-term groundwater extraction, the deformation of aquifer and aquitard units consists of elastic, plastic, visco-elastic, and visco-plastic components. The recoverable elastic and visco-elastic deformation is only a small portion of the total deformation for both aquitard and aquifer units, especially when the groundwater level in the units is lower than the historically lowest values. When the groundwater level in aquifer and aquitard units rises, whether their expansion occurs immediately or not, depends on the changing modes of groundwater level they have experienced. Even aquifer units do not always rebound closely following the rise of groundwater level in them. The lagging of the occurrence of arrested land subsidence and uplift, clearly behind the rise of groundwater level in aquifer units, can be attributed to the visco-plastic deformation of all units and the consolidation deformation of aquitard units. Artificial recharge and limitation of pumpage are efficient measures for controlling land subsidence, but earlier actions are necessary to keep groundwater levels in all aquifer units above their historically lowest values all the time, if a more effective outcome is expected.

Résumé

L’augmentation de la recharge artificielle des aquifères et la restriction de la sollicitation des eaux souterraines par pompage ont causé des déplacements des terrains à Shanghai (Chine) passant de la subsidence au soulèvement. Sur la base de données de terrain et de laboratoire, les caractéristiques et mécanismes de la subsidence et du soulèvement des terrains sont analysés et discutés. En condition d’exploitation des eaux souterraines sur le long terme, la déformation de l’aquifère et des formations aquitards repose sur les composantes suivantes : élasticité, plasticité, visco-élasticité et visco-plasticité. La déformation élastique et visco-élastique réversible constitue seulement une faible proportion de la déformation totale pour les deux unités aquifères et aquitards, en particulier lorsque le niveau piézométrique dans ces unités est inférieur aux valeurs historiques les plus basses. Lorsque les niveaux piézométriques dans les unités aquifères et aquitards augmentent, si le développement de l’influence se produit immédiatement ou non, cela est dû au changement de régime des niveaux piézométriques. Les unités aquifères également ne subissent pas toujours des mouvements verticaux immédiatement après une augmentation des niveaux piézométriques en leur sein. Le retard de l’apparition d’un arrêt de subsidence et de soulèvement des terrains juste après une augmentation du niveau piézométrique dans les unités aquifères peut être attribué à la déformation visco-plastique de toutes les unités et à la déformation de la consolidation des unités aquitards. La recharge artificielle et la limitation des pompages sont des mesures efficaces pour contrôler la subsidence des terrains, mais des actions préalables sont nécessaires pour maintenir de manière permanente les niveaux piézométriques dans toutes les unités aquifères au-dessus des valeurs historiques les plus basses, si un résultat plus efficace est attendu.

Resumen

El aumento de la recarga artificial de agua y la restricción en el bombeo de agua subterránea han causado movimientos del terreno en Shanghai (China) lo cual ha significado un desplazamiento desde la subsidencia a la elevación. Sobre la base de los datos de campo y de laboratorio se analizan y discuten las características y el mecanismo de la subsidencia y la elevación del terreno. La deformación de las unidades acuíferas y acuitardas consta de las componentes elásticas, plásticas, visco-elásticas y visco-plásticas en condiciones de extracción de agua subterránea a largo plazo. La deformación elástica y visco-elástica recuperable es sólo una pequeña parte de la deformación total para las unidades acuíferas y acuitardas, especialmente cuando el nivel de las aguas subterráneas en las unidades es inferior a los valores históricamente más bajos. Cuando el nivel de las aguas subterráneas en las unidades acuíferas y acuitardas asciende, si la expansión se produce en forma inmediata o no, depende del modo en que los cambios se han experimentado en el nivel de las aguas subterráneas. Incluso las unidades acuíferas no siempre se recuperan siguiendo de cerca el ascenso del nivel del agua subterránea en ellas. El retraso en la ocurrencia de la subsidencia y de la elevación del terreno retenido, claramente detrás del ascenso del nivel del agua subterránea en las unidades de acuíferas, puede ser atribuida a la deformación visco-plástico de todas las unidades y la consolidación de la deformación de las unidades acuitardas. La recarga artificial y la limitación de bombeo son medidas eficientes para controlar la subsidencia del terreno, pero son necesarias las acciones previas para mantener los niveles de agua subterránea en todas las unidades del acuífero por encima de sus valores históricamente más bajos durante todo el tiempo, si se espera un resultado más efectivo.

摘要

不断增加的人工回灌量和对地下水开采量的限制使得上海的地面从下沉转变为上升。根据现场和室内试验资料,本文分析和讨论了上海地面下沉和上升的特征和机理。在长期开采地下水条件下,含水层和弱透水层的变形包括弹性、塑性、粘弹性和粘塑性变形。无论对含水层还是弱透水层,可恢复的弹性和粘弹性变形仅占总变形的一小部分,特别是当地下水位低于含水层、弱透水层所经历的历史上的最低水位时。含水层和弱透水层在其中地下水位升高的情况下是否立即回弹取决于它们所经历的地下水位变化模式,即使含水砂层也不总是随着其中的地下水位回升而立即回弹。地面沉降及回升的明显滞后可归因于含水层和弱透水层的粘塑性变形以及弱透水层的固结。人工回灌和限制地下水开采量是控制地面沉降的有效措施,但是要获得更好的控沉效果,需要尽早采取行动以使含水层和弱透水层中的水位高于其历史上的最低水位。

Resumo

Aumentos na recarga artificial e restrições no bombeamento das águas subterrâneas tem causado deslocamentos de terreno em Xangai (China) a fim de alterar subsidência para soerguimento. Com base nos dados de campo e de laboratório, as características e mecanismos de subsidência e soerguimento de terreno são analisados e discutidos. Sob a condição de extração de águas subterrâneas em longo prazo, a deformação dos aquíferos e unidades aquitardes consiste componentes elásticos, plásticos, visco-elásticos, e visco-plásticos. A deformação elástica e visco-elástica recuperável é apenas uma pequena parte da deformação total para ambas as unidades aquitardes e aquíferos, especialmente quando o nível das águas subterrâneas nas unidades é mais baixo que seus os menores valores históricos. A elevação das águas subterrâneas em aquíferos e aquitardes depende dos modos de mudança de níveis por onde elas passaram, quer sua expansão ocorra imediatamente ou não. Mesmo unidades aquíferas nem sempre acompanham o recuo a ascensão de seus níveis freáticos. O atraso encontrado na ocorrência de subsidência e soerguimento, visto claramente por trás da ascensão do nível do lençol freático em unidades aquíferas, pode ser atribuído à deformação visco-plástica de todas as unidades e à deformação/consolidação de unidades aquitarde. A recarga artificial e limitação do bombeamento são medidas eficientes para controlar a subsidência de terreno, mas ações prévias são necessárias para manter os níveis de águas subterrâneas em todas as unidades aquíferas acima de seus valores históricos mais baixos o tempo todo, caso se espere um resultado eficaz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Chen CT, Hu JC, Lu CY, Lee JC, Chan YC (2007) Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng Geol 95:30–47

    Article  Google Scholar 

  • Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. U S Geol Surv Circ 1182, 177 pp

  • Gong SL (2009) Change of groundwater seepage field and its influence on development of land subsidence in Shanghai (in Chinese). J Water Resour Water Eng 20(3):1–6

    Google Scholar 

  • Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566

    Article  Google Scholar 

  • Kosloff D, Scott RF, Scranton J (1980) Finite element simulation of Wilmington oil field subsidence: I. linear. Tectonophysics 65:339–368

    Article  Google Scholar 

  • Lade PV, Liu CT (1998) Experimental study of drained creep behavior of sand. J Eng Mech 124(8):912–920

    Article  Google Scholar 

  • Leake SA (1991) Simulation of vertical compaction in models of regional groundwater flow. In: Johnson AJ (ed) Land subsidence (Proceedings of the Fourth International Symposium on Land Subsidence). IAHS Publ. no. 200, IAHS, Wallingford, UK, pp 565–574

  • Murayama S, Michihiro K, Sakagami T (1984) Creep characteristics of sands. Soils Foundations 24(2):1–15

    Article  Google Scholar 

  • Pestana JM, Whittle AJ (1998) Time effects in the compression of sands. Geotechnique 48(5):695–701

    Article  Google Scholar 

  • Schmidt DA, Bürgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J Geophys Res 108(B9):2416

    Article  Google Scholar 

  • SGEAEB (Shanghai Geological Environmental Atlas Editorial Board) (2002) Shanghai geological environmental atlas (in Chinese). Geological Publishing House, Beijing, 143 pp

  • Teatini P, Castelletto N, Ferronato M, Gambolati G, Tosi L (2011) A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resour Res 47:W12507

    Google Scholar 

  • Teatini P, Tosi L, Strozzi T, Carbognin L, Cecconi G, Rosselli R, Libardo S (2012) Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry. Phys Chem Earth 40–41:72–79

    Article  Google Scholar 

  • Zhang AG, Wei ZX (2005) Land subsidence in China (in Chinese). Shanghai Science and Technology Press, Shanghai, 240 pp

  • Zhang Y, Xue YQ, Li QF (2003) Current prominent subsidence layer and its deformation properties in Shanghai (in Chinese). Hydrogeol Eng Geol 30(5):6–11

    Google Scholar 

  • Zhang Y, Xue YQ, Wu JC, Liu YT, Pu XF (2009) Experimental research on creep of Shanghai sands (in Chinese). Rock Soil Mech 30(5):1226–1230

    Google Scholar 

  • Zhang Y, Xue YQ, Wu JC, Wang HM, He JJ (2012) Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Eng Geol 125:74–80

    Article  Google Scholar 

  • Zhang Y, Xue YQ, Wu JC, Ye SJ, Li QF (2007) Stress–strain measurements of deforming aquifer systems that underlie Shanghai, China. Environ Eng Geosci 13(3):217–228

    Article  Google Scholar 

  • Zhang Y, Xue YQ, Wu JC, He JJ, Wang HM (2011) Experimental study of creep deformation of saturated clay (in Chinese). Rock Soil Mech 32(3):672–676

    Google Scholar 

  • Zhang Y, Xue YQ, Wu JC, Wang ZC (2015) Compaction of aquifer units under complex patterns of changing groundwater level. Environ Earth Sci 73:1537–1544

    Article  Google Scholar 

  • Zhou X, Burbey TJ (2014) Deformation characteristics of a clayey interbed during fluid injection. Eng Geol 183:185–192

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the constructive comments and suggestions from Prof. Maria-Theresia Schafmeister, an anonymous associate editor, an anonymous reviewer, and Dr. Devin L. Galloway, which were all very helpful for the authors to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J., Xue, Y. et al. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeol J 23, 1851–1866 (2015). https://doi.org/10.1007/s10040-015-1302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1302-x

Keywords

Navigation