Skip to main content
Log in

The soil–water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water

Le système sol-écoulement d’eau en-dessous d’un champ de coton en milieu aride dans le Nord-Ouest de la Chine, entretenu par une irrigation au goutte à goutte sous bâche utilisant eau eau saumâtre

El sistema de flujo agua-suelo debajo de un campo de algodón en el árido noroeste de China, servido por una cobertura de riego por goteo usando agua salobre

中国西北干旱区微咸水膜下滴灌棉田土壤水流系统

Sistema de fluxo da água no solo sob uma plantação de algodão no noroeste árido da China, utilizando rega gota-a-gota com água salobra sob uma tela

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A field experiment was carried out in southern Xinjiang, China, to reveal soil-water flow pattern beneath a combined plastic-mulch (film) and drip-irrigation system using brackish water. The soil-water flow system (SWFS) was characterized from soil surface to the water table based on observed spatio-temporal distribution of total soil-water potential, water content and electric conductivity. Root suction provided a strong inner sink. The results indicated that SWFS determined the soil salinity and moisture distribution. Drip-irrigation events could leach excess salts from the root zone and provide soil conditions with a tolerable salinity level that supports the growth of cotton. High-salinity strips were formed along the wetting front and at the bare soil surface. Hydrogeology conditions, irrigation regime, climate, plant growth and use of mulch would affect potential sources and sinks, boundary conditions and the size of the SWFS. At depth 0–60 cm, the soil salinity at the end of the irrigation season was 1.9 times that at the beginning. Beneath the mulch cover, the soil-water content in the ‘wide rows’ zone (55 cm between the two rows with no drip line) was higher than that in the ‘narrow rows’ zone (15 cm between the two rows with a drip line) due to the strong root-water uptake. The downward water flow below the divergent curved surface of zero flux before irrigation, and the water-table fluctuation with irrigation events, indicated that excessive irrigation occurred.

Résumé

Une expérimentation au champ a été mise en œuvre dans le Sud de Xinjiang, Chine, pour qualifier le schéma de distribution du potentiel total de l’eau dans le sol en dessous d’un système associant une couverture par film plastique et une irrigation au goutte à goutte utilisant une eau saumâtre. Le système sol-écoulement en eau (SSEE) est décrit de la surface du sol à la surface de la nappe. La succion par les racines provoquait un fort rabattement au sein du milieu. Les résultats indiquent que le système sol-écoulement en eau (SSEE) détermine la salinité du sol et la répartition de l’humidité. Il est possible que les épisodes d’irrigation au goutte à goutte lessivent des sels en excès depuis la zone racinaire et fournissent les conditions d’un sol avec un niveau de salinité tolérable qui est en faveur de la croissance du coton. Des langues de forte salinité se sont formées le long du front d’infiltration et à la surface du sol nu. Les conditions hydrogéologiques, le régime d’irrigation, le climat, la croissance des plantes et l’utilisation d’un film agiraient sur les ressources potentielles et les rabattements, les conditions aux limites et les dimensions du SSEE. Entre 0 et 60 cm de profondeur, la salinité du sol était à la fin de la saison d’irrigation de 1.9 fois celle du début de saison. En-dessous du film, la teneur en eau du sol dans la zone des « rangées distantes » (55 cm entre deux rangées sans ligne de goutte à goutte) était plus élevée que dans la zone des « rangées proches » (15 cm entre deux rangées avec une ligne de goutte à goutte) en raison du fort prélèvement d’eau par les racines. Le flux vertical descendant de l’eau en dessous de la surface courbe divergente de flux nul avant irrigation, et la fluctuation de la surface piézométrique au rythme des épisodes d’irrigation, indiquent qu’une irrigation excessive a eu lieu.

Resumen

Se llevó a cabo un experimento de campo en el sur de Xinjiang, China, para describir la distribución esquemática del potencial total agua - suelo debajo de un manto de plástico (film) y un sistema de irrigación por goteo usando agua salobre. El sistema de flujo agua-suelo (SWFS) se caracterizó a partir de la superficie del suelo hacia la capa freática. La succión de las raíces proporcionó un fuerte sumidero interno. Los resultados indicaron que el SWFS determinó la distribución de la salinidad y humedad del suelo. Los eventos de riego por goteo podrían lixiviar los excesos de sales de la zona de la raíz y proporcionar las condiciones al suelo con un nivel tolerable de salinidad que sustente el crecimiento del algodón. Se formaron bandas de alta salinidad a lo largo del frente de humedecimiento y en la superficie del suelo desnudo. Las condiciones hidrogeológicas, el régimen de irrigación, el clima, el crecimiento de las plantas y el uso de la cubierta afectarían las fuentes y sumideros potenciales, condiciones de contorno y tamaño del SWFS. A la profundidad de 0–60 cm, la salinidad del suelo en el final de la estación de irrigación fue 1.9 veces mayor que la del comienzo. Por debajo de la cubierta del manto, el contenido de suelo agua en la zona de surcos anchos (55 cm entre las dos filas con una línea sin goteo) fue mayor que en la zona de los surcos angostos (15 cm entre los dos surcos con una línea de goteo) debido a la fuerte absorción de agua por parte de las raíces. El flujo de agua hacia abajo por debajo de la superficie curva divergente de flujo cero previa a la irrigación, y la fluctuación del nivel freático con eventos de irrigación, indicaron que había ocurrido una irrigación excesiva.

摘要

为刻画微咸水膜下滴灌土壤水流模式,在新疆南部开展了田间试验。定义出从地表到地下水位的土壤水流系统,其中根系吸水为内部强汇。研究结果表明,土壤水流系统控制着土壤水盐分布。滴灌可以将汇聚的过量盐分淋洗出根区,使根区盐分水平利于棉花生长。在湿润体边缘及膜间裸地形成高盐带。水文地质条件、灌溉制度、气象条件、作物生长阶段及覆膜等因素影响土壤水流系统的源汇项、边界条件及发育范围。灌期结束后0–60 cm土壤含盐量是灌期开始前的1.9倍。在根系强烈吸水作用下,膜下宽行(棉花行距为55 cm,无滴灌带)含水量大于窄行(棉花行距为15 cm,铺设滴灌带)。灌水事件开始前零通量曲面以下的下渗水流及地下水位随灌水波动,均表明棉田灌水过度。

Resumo

Foi realizada uma experiência de campo no sul de Xinjiang, na China, para descrever a distribuição esquemática do potencial total de água no solo sob um sistema combinado de rega gota-a-gota com água salobra sob tela. O sistema de fluxo de água no solo (SWFS) foi caraterizado desde a superfície do solo até ao nível freático. A sucção das raízes provocou um forte afundamento interno do nível freático. Os resultados indicaram que o SWFS determinou a salinidade do solo e a distribuição de humidade. Eventos de rega com gota-a-gota podem lixiviar o excesso de sais da zona da raiz e proporcionar condições de solo com um nível de salinidade tolerável para suportar o crescimento do algodão. Faixas de elevada salinidade foram formadas ao longo da frente húmida e à superfície do solo nu. As condições hidrogeológicas, o regime de rega, o clima, o crescimento da vegetação e a utilização de tela afetaria as origens e rebaixamentos potenciais do nível freático, as condições de fronteira e a dimensão do SWFS. À profundidade de 0–60 cm, a salinidade do solo no final do período de rega foi 1.9 vezes maior do que no início. Sob a tela, o conteúdo de água no solo na zona das “fileiras largas” (55 cm entre as duas linhas sem nenhuma tubagem de gota-a-gota) foi maior do que na zona de “linhas estreitas” (15 cm entre as duas linhas com uma tubagem gota-a-gota), devido à forte absorção de água pelas raízes. O fluxo descendente de água sob a superfície curva divergente de fluxo nulo antes da rega e a flutuação do nível freático com os eventos de rega indicam que ocorreu um excesso de rega.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Assouline S, Moller M, Cohen S, Ben-Hur M, Grava A, Narkis K, Silber A (2006) Soil-plant system response to pulsed drip irrigation and salinity: bell pepper case study. Soil Sci Soc Am J 70:1556–1568

    Article  Google Scholar 

  • Bar-Yosef B, Sheikholslami MR (1976) Distribution of water and ions in soil irrigated and fertilized from a trickle source. Soil Sci Soc Am J 40:575–582

    Article  Google Scholar 

  • Bhattarai SP, Midmore DJ, Pendergast L (2008) Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrig Sci 26:439–450

    Article  Google Scholar 

  • Boaga J, Rossi M, Cassiani G (2013) Monitoring soil-plant interactions in an apple orchard using 3D electrical resistivity tomography. Procedia Environ Sci 19:394–402

    Article  Google Scholar 

  • Chen WP, Hou ZN, Wu LS, Liang YC, Wei CZ (2010a) Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agr Water Manage 97:2001–2008

    Article  Google Scholar 

  • Chen WP, Hou ZA, Wu LS, Liang YC, Wei CZ (2010b) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326:61–73

    Article  Google Scholar 

  • Cook FJ, Thorburn PJ, Fitch P, Bristow KL (2003) WetUp: a software tool to display approximate wetting patterns from drippers. Irrig Sci 22:129–134

    Article  Google Scholar 

  • Communar G, Friedman SP (2012) Steady infiltration from a surface point source into a two-layered cylindrically confined and unconfined soil region with root water extraction. Vadose Zone J 11. doi:10.2136/vzj2011.0189

    Google Scholar 

  • Danierhan S, Shalamu A, Tumaerbai H, Guan DH (2013) Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China. J Arid Land 5:51–59

    Article  Google Scholar 

  • El-Hendawy SE, Hokam EM, Schmidhalter U (2008) Drip irrigation frequency: the effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions. J Agron Crop Sci 194:180–192

    Article  Google Scholar 

  • Hammecker C, Maeght JL, Grunberger O, Siltacho S, Srisruk K, Noble A (2012) Quantification and modelling of water flow in rain-fed paddy fields in NE Thailand: evidence of soil salinization under submerged conditions by artesian groundwater. J Hydrol 456:68–78

    Article  Google Scholar 

  • Hamed Y (2008) Soil structure and salinity effects of fish farming as compared to traditional farming in northeastern Egypt. Land Use Policy 25:301–308

    Article  Google Scholar 

  • Hanson BR, Simunek J, Hopmans JW (2006a) Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling. Agr Water Manage 86:102–113

    Article  Google Scholar 

  • Hanson BR, Hutmacher RB, May DM (2006b) Drip irrigation of tomato and cotton under shallow saline ground water conditions. Irrig Drain Syst 20:155–175

    Article  Google Scholar 

  • Hanson BR, May DE, Simunek J, Hopmans JW, Hutmacher RB (2009) Drip irrigation provides the salinity control needed for profitable irrigation of tomatoes in the San Joaquin Valley. Calif Agric 63:131–136

    Article  Google Scholar 

  • Hao AM, Marui A, Haraguchi T, Nakano Y (2007) Estimation of wet bulb formation in various soil during drip irrigation. J Fac Agr Kyushu U 52:187–193

    Google Scholar 

  • Kirnak H, Demirtas MN (2006) Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditions. J Plant Nutr 29:1675–1690

    Article  Google Scholar 

  • Letey J, Hoffman GJ, Hopmans JW, Grattan SR, Suarez D, Corwin DL, Oster JD, Wu L, Amrhein C (2011) Evaluation of soil salinity leaching requirement guidelines. Agr Water Manage 98:502–506. doi:10.1016/j.agwat.2010.08.009*10.1016/j.agwat.2010.08.009

    Article  Google Scholar 

  • Li X (2003) Pressure of water shortage on agriculture in arid region of China. Chin Geogr Sci 13:124–129

    Article  Google Scholar 

  • Liu MX, Yang JS, Li XM, Yu M, Wang J (2012) Effects of irrigation water quality and drip tape arrangement on soil salinity, soil moisture distribution, and cotton yield (Gossypium hirsutum L.) under mulched drip irrigation in Xinjiang, China. J Integr Agric 11:502–511

    Article  Google Scholar 

  • Liu MX, Yang JS, Li XM, Yu M, Wang J (2013a) Numerical simulation of soil water dynamics in a drip irrigated cotton field under plastic mulch. Pedosphere 23:620–635

    Article  Google Scholar 

  • Liu MX, Yang JS, Li XM, Liu GM, Yu M, Wang J (2013b) Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China. Irrig Sci 31:675–688

    Article  Google Scholar 

  • Mai WX, Tian CY, Li CJ (2013) Soil salinity dynamics under drip irrigation and mulch film and their effects on cotton root length. Commun Soil Sci Plan 44:1489–1502

    Article  Google Scholar 

  • Marouelli WA, Silva W (2007) Water tension thresholds for processing tomatoes under drip irrigation in central Brazil. Irrig Sci 25:411–418

    Article  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance: current assessment. J Irrig Drain Div 103:115–134

    Google Scholar 

  • Mirjat MS, Mughal AQ, Chandio AS (2014) Simulating water flow and salt leaching under sequential flooding between subsurface drains. Irrig Drain 63:112–122

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Niu WQ, Wu PT, Li J, Shao HB (2010) One of frontiers in agricultural and environmental biotechnology for the arid regions: micro-pressure drip irrigation technology theory and practices. Afr J Biotechnol 9:2891–2897

    Google Scholar 

  • Oron G, DeMalach Y, Gillerman L, David I, Lurie S (2002) Effect of water salinity and irrigation technology on yield and quality of pears. Biosyst Eng 81:237–247

    Article  Google Scholar 

  • Panigrahi P, Sharma RK, Parihar SS, Hasan M, Rana DS (2013) Economic analysis of drip-irrigated kinnow mandarin orchard under deficit irrigation and partial zone drying. Irrig Drain 62:67–73

    Article  Google Scholar 

  • Preti F, Dani A, Laio F (2010) Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecol Eng 36:305–316

    Article  Google Scholar 

  • Schlueter S, Vogel HJ, Ippisch O, Vanderborght J (2013) Combined impact of soil heterogeneity and vegetation type on the annual water balance at the field scale. Vadose Zone J 12. doi:10.2136/vzj2013.03.0053

    Google Scholar 

  • Sezen SM, Yazar A, Eker S (2006) Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agr Water Manage 81:115–131

    Article  Google Scholar 

  • Selim T, Bouksila F, Berndtsson R, Persson M (2013) Soil water and salinity distribution under different treatments of drip irrigation. Soil Sci Soc Am J 77:1144–1156

    Article  Google Scholar 

  • Shan YY, Wang QJ, Wang CX (2011) Simulated and measured soil wetting patterns for overlap zone under double points sources of drip irrigation. Afr J Biotechnol 10:13744–13755

    Google Scholar 

  • Tang LS, Li Y, Zhang JH (2010) Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area. Agr Water Manage 97:1527–1533

    Article  Google Scholar 

  • Vazquez N, Pardo A, Suso ML, Quemada M (2006) Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agr Ecosyst Environ 112:313–323

    Article  Google Scholar 

  • van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–989

    Article  Google Scholar 

  • van Genuchten M, Leij F, Yates S (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. Tech. report EPA/600/2-91/065, US Environmental Protection Agency, Washington, DC

  • Wang ZM (2013) Study on the cotton-water-solute interactions under mulched drip irrigation with brackish water in an arid area (in Chinese). China University of Geoscience, Wuhan, China

    Google Scholar 

  • Wang ZM, Jin MG, Šimůnek J, van Genuchten MT (2014a) Evaluation of mulched drip irrigation for cotton in arid northwest China. Irrig Sci 32:15–27. doi:10.1007/s00271-013-0409-x

    Article  Google Scholar 

  • Wang RS, Wan SQ, Kang YH, Dou CY (2014b) Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China. Agr Water Manage 131:41–49

    Article  Google Scholar 

  • Yang JZ, Cheng XJ (2004) Rational exploitation and utilization of brackish water resource (in Chinese). China Water Resources News, Beijing, http://cds.chinawater.com.cn:8088/wasdemo/detail?record=11&channelid=113513&searchword=bzqh%3D2025. Cited 5 March 2014

  • Yang SL, Aydin M, Kitamura Y, Yano T (2010) The impact of irrigation water quality on water uptake by orange trees. Afr J Agric Res 5:2661–2667

    Google Scholar 

  • Zhang QQ, Xu HL, Fan ZL, Ye M, Yu PJ, Fu JY (2013) Impact of implementation of large-scale drip irrigation in arid and semi-arid areas: case study of Manas River valley. Commun Soil Sci Plan 44:2064–2075

    Article  Google Scholar 

  • Zhang Z, Tian F, Hu H, Yang P (2014) A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance. Hydrol Earth Syst Sci 18:1053–1072

    Article  Google Scholar 

  • Zegada-Lizarazu W, Berliner PR (2011) The effects of the degree of soil cover with an impervious sheet on the establishment of tree seedlings in an arid environment. New Forest 42:1–17

    Article  Google Scholar 

  • Zumr D, Dohnal M, Hrncir M, Cislerova M, Vogel T, Dolezal F (2006) Simulation of soil water dynamics in structured heavy soils with respect to root water uptake. Biologia 6119:S320–S323

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (41172218). We gratefully acknowledge the Irrigation Experiment Station of Korla for providing working space and housing. In particular, we sincerely thank Professor Ben Engelen, Dr. Jo Mcfarlane and Mr. Alhassan Abubakari for their comments, suggestions and language assistance on this manuscript. Also, we would like to give our sincere thanks to the reviewers for all their comments, which improved the quality of the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menggui Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jin, M., Huang, J. et al. The soil–water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water. Hydrogeol J 23, 35–46 (2015). https://doi.org/10.1007/s10040-014-1210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1210-5

Keywords

Navigation