Skip to main content
Log in

Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow

Caractéristiques de la conductivité hydraulique en région de montagne et implications pour la conceptualisation des écoulements souterraines dans la roche en place

Características de la conductividad hidráulica en montañas e implicancias para conceptualizar el flujo del agua subterránea en el basamento

山区水力传导率特征及在概念化基岩地下水流中的含意

Condutividades hidráulicas típicas em montanhas e implicações para a concetualização do escoamento subterrâneo no bedrock

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Influences of hydraulic conductivity (K) heterogeneities on bedrock groundwater (BG) flow systems in mountainous topography are investigated using a conceptual 2D numerical modelling approach. A conceptual model for K heterogeneity in crystalline bedrock mountainous environments is developed based on a review of previous research, and represents heterogeneities due to weathering profile, bedrock fracture characteristics, and catchment-scale (∼0.1–1 km) structural features. Numerical groundwater modelling of K scenarios for hypothetical mountain catchment topography indicates that general characteristics of the BG flow directions are dominated by prominent topographic features. Within the modelled saturated BG flow system, ∼90 % or more of total BG flux is focussed within a fractured bedrock zone, extending to depths of ∼100–200 m below the ground surface, overlying lower-K bedrock. Structural features and heterogeneities, represented as discrete zones of higher or lower K relative to surrounding bedrock, locally influence BG flow, but do not influence general BG flow patterns or general positions of BG flow divides. This result is supported by similar BG transit-time distribution shapes and statistics for systems with and without structural features. The results support the development of topography-based methods for predicting general locations of BG flow-system boundaries in mountain regions.

Résumé

Les influences des hétérogénéités de la conductivité hydraulique (K) dans les systèmes d’écoulements d’eaux souterraines dans la roche en place (RP) en région de reliefs montagneux sont étudiées à partir d’une approche de modèle conceptuel numérique en 2D. Un modèle conceptuel pour l’hétérogénéité de K dans des environnements montagneux de roche cristalline en place est développé sur la base d’une revue des recherches antérieures, et représente les hétérogénéités liées au profil d’altération, aux caractéristiques des fractures dans la roche en place, et aux éléments structuraux à l’échelle du bassin (0.1–1 km). La modélisation numérique des eaux souterraines de scénarios de K pour un bassin hypothétique de relief montagneux indique que les caractéristiques générales des directions d’écoulements du RP sont dominées par les caractéristiques topographiques importantes. Au sein du système d’écoulement saturé modélisé au sein du RP, environ 90 % ou plus des écoulements totaux du RP sont concentrés au niveau de la zone fracturée de la RP, et s’étendant en profondeur jusqu’à 100 à 200 m sous le niveau de la surface piézométrique, surmontant la roche en place de plus faible K. Les caractéristiques structurales et les hétérogénéités, représentées comme des zones discrètes de plus forte ou plus faible K par rapport à la roche en place environnante, influencent localement les écoulements, mais n’influencent pas de manière générale les modalités d’écoulement ou les positions générales des lieux de divergence des écoulements souterrains. Ce résultat est soutenu par des formes similaires de distribution des temps de transfert dans le RP et des statistiques pour des systèmes avec ou sans éléments structuraux. Les résultats appuient le développement de méthodes basées sur la topographie, pour prédire les localisations principales des limites des systèmes d’écoulement du RP en régions montagneuses.

Resumen

Se investigan las influencias de las heterogeneidades de la conductividad hidráulica (K) en los sistemas de flujo de agua subterránea del basamento (BG) en topografías montañosas usando una aproximación de modelado numérico conceptual 2D. Se desarrolla un modelo conceptual para las heterogeneidades de K en ambientes montañosos de basamento cristalino basado en una revisión de investigaciones previas, y representa las heterogeneidades debido al perfil meteorizado, características de las fracturas del basamento, y los rasgos estructurales a escala de cuenca (∼0.1–1 km). El modelado numérico de escenarios para la K del agua subterránea para una hipotética topografía de cuenca de montaña indica que las características generales de las direcciones del flujo BG están dominadas por los rasgos topográficos prominentes. Dentro del sistema modelado de flujo saturado BG, ∼90 % o más del total del flujo BG flux está concentrado dentro de una zona de basamento fracturado, extendiéndose a profundidades de ∼100–200 m por debajo de la superficie del terreno, yaciendo por encima de las menores K del basamento. Los rasgos estructurales y las heterogeneidades, representadas como zonas discretas de más alta o más baja K en relación al basamento circundante, influyen localmente en el flujo BG, pero no influye en los patrones del flujo general del BG o en las posiciones generales de las divisorias del flujo de BG. Este resultado está apoyado por formas similares de distribución de tiempos de tránsitos en BG y estadísticas de sistemas con y sin rasgos estructurales. El resultado sostiene el desarrollo de métodos basados en la topografía para predecir las ubicaciones generales de los límites de los sistemas de flujo en BG en regiones montañosas.

摘要

采用概念的二维数值模拟方调查了水力传导率(K)非均匀性对山区基岩地下水(BG)流系统的影响。根据综述以前的研究,开发了结晶基岩山区环境中水力传导率(K)概念模型,描述了由于风化剖面、基岩断裂特征和流域尺度(∼0.1–1km)结构特征的不同而造成的非均匀性。假设山区流域地形的各种水力传导率(K)数值地下水模拟表明,基岩地下水(BG)流方向总的特征受主要地形特征的控制。在模拟的饱和基岩地下水流系统内,基岩地下水总通量的大约90%或者更多集中在断裂基岩带内,延伸到地表以下大约100–200米,覆盖着水力传导率低的基岩。由与周围基岩相关的水力传导率高或低的不连续带展示的构造特征和非均匀性局部影响基岩地下水流,但不影响总的基岩地下水流模式或基岩地下水流分水岭的总的位置。这个结果受到类似基岩地下水流渡越时间分布形状及具有及不具有构造特征的系统的统计数据的支持。这个结果有助于开发基于地形的方法预测山区基岩地下水流边界的总的位置。

Resumo

Usando uma abordagem concetual de modelação numérica 2D foram investigadas as influências das heterogeneidades da condutividade hidráulica (K) de sistemas de fluxo de águas subterrâneas no bedrock (BG) em topografia montanhosa. É desenvolvido um modelo concetual para a heterogeneidade de K em ambientes montanhosos de bedrock cristalino com base em revisão de pesquisas anteriores, e são representadas as heterogeneidades em função do perfil de alteração, das caraterísticas das fraturas do bedrock, e das caraterísticas estruturais da área de alimentação (∼0.1 a 1 km). A modelação numérica de águas subterrâneas para cenários de K e topografia montanhosa hipotética da área de alimentação indica que as caraterísticas gerais das direções de fluxo das BG são dominadas por caraterísticas topográficas proeminentes. Dentro do modelado saturado do sistema de fluxo das águas subterrâneas do bedrock, aproximadamente 90 % ou mais do fluxo total das águas subterrâneas do bedrock é focalizado dentro de uma zona fraturada do bedrock que se estende a uma profundidade de cerca de 100 a 200 m abaixo da superfície do solo que se sobrepõe a um bedrock com K inferior. Caraterísticas estruturais e heterogeneidades, representadas como zonas discretas de maior ou menor K em relação ao bedrock circundante, influenciam localmente o fluxo das BG, mas não influenciam os padrões gerais de fluxo das BG ou posições gerais de divisórias de fluxo das BG. Estes resultados são suportados por formas semelhantes de distribuição do tempo de trânsito das BG e por estatísticas para sistemas com e sem caraterísticas estruturais. Os resultados apoiam o desenvolvimento de métodos baseados na topografia para prever localizações gerais de fronteiras de sistemas de fluxo das BG em regiões montanhosas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andermann C, Longuevergne L, Bonnet S, Crave A, Davy P, Gloaguen R (2012) Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat Geosci 5:127–132. doi:10.1038/NGEO1356

    Article  Google Scholar 

  • Anderson SP, Deitrich WE, Montgomery DR, Torres R, Conrad ME, Loague K (1997) Subsurface flow paths in a steep, unchanneled catchment. Water Resour Res 33(12):2637–2653

    Article  Google Scholar 

  • Anderson SP, Dietrich WE, Brimhall GH Jr (2002) Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Am Bull 114(9):1143–1158. doi:10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2

    Google Scholar 

  • Anderson SP, von Blanckenburg F, White AF (2007) Physical and chemical controls on the critical zone. Elements 3:315–319

    Article  Google Scholar 

  • Banks EW, Simmons CT, Love AJ, Cranswick R, Werner AD, Bestland EA, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17:1969–1989

    Article  Google Scholar 

  • Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854. doi:10.1007/s10040-010-0640-y

    Article  Google Scholar 

  • Brantley SL, White AF (2009) Approaches to modeling weathered regolith. Rev Mineral Geochem 70:435–484. doi:10.2138/rmg.2009.70.10

    Article  Google Scholar 

  • Brooks RT (2009) Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Climate Change 95:469–483

    Article  Google Scholar 

  • Caine JS (2006) Questa baseline and premining ground-water quality investigation 18: characterization of brittle structures in the Questa Caldera and their potential influence on bedrock ground-water flow. Red River Valley, New Mexico. US Geol Surv Prof Pap 1729

    Google Scholar 

  • Caine JS, Tomusiak SRA (2003) Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Rang. Geol Soc Am Bull 115(11):1410–1424

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028. doi:10.1130/0091-7613

    Article  Google Scholar 

  • Caine JS, Manning, AH, Verplanck, PL, Bove DJ, Kahn KG, Ge S (2008) U.S. Geological Survey research in Handcart Gulch, Colorado: an alpine watershed affected by metalliferous hydrothermal alteration. In: Verplanck PL (ed) Understanding contaminants associated with mineral deposits. US Geol Surv Circ 1328:50-57

  • Camels D, Galy S, Hovius N, Bickle M, West AJ, Chen M, Chapman H (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet Sci Lett 303:48–58. doi:10.1016/j.epsl.2010.12.032

    Article  Google Scholar 

  • Davis S, Turk L (1964) Optimum depth of wells in crystalline rocks. Ground Water 2(2):6–11

    Article  Google Scholar 

  • Desbarats AJ (2002) A lumped-parameter model of groundwater influx to a mine adit in mountainous terrain. Water Resour Res 38(11):1256. doi:10.1029/2001WR001058

    Article  Google Scholar 

  • Dethier DP, Lazarus ED (2006) Geomorphic inferences from regolith thickness, chemical denudation and CRN erosion rates near the glacial limit, Boulder Creek catchment and vicinity, Colorado. Geomorphology 75:384–399. doi:10.1016/j. geomorph.2005.07.029

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Wyns R, Marechal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284. doi:10.1016/j.jhydrol.2006.03.026

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Zaidi FK, Chandra S (2011) A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India. J Hydrol 405:474–487. doi:10.1016/j.jhydrol.2011.05.050

    Article  Google Scholar 

  • Dewandel B, Marechal JC, Bour O, Ladouche B, Ahmed S, Chandra S, Pauwels H (2012) Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J Hydrol 416:83–97. doi:10.1016/j.jhydrol.2011.11.038

    Article  Google Scholar 

  • DHI-WASY (2010) FEFLOW 6.0, Finite element subsurface flow and transport simulation system. DHI-WASY, Berlin. http://www.feflow.info/. Accessed Jan 2011

  • Diersch H-JG (2009) Treatment of free surfaces in 2D and 3D groundwater modelling. In: WASY Software FEFLOW (ed) Finite element subsurface flow and transport simulation system, White Papers, vol 1. WASY GmbH, Berlin, pp 67–100

    Google Scholar 

  • Ebel BA, Loague K, Montgomery DR, Dietrich WE (2008) Physics-based continuous simulation of long-term near-surface hydrologic response for the Coos Bay experimental catchment. Water Resour Res 44, W07417. doi:10.1029/2007WR006442

    Article  Google Scholar 

  • Ericson K, Migon P, Olvmo M (2005) Fractures and drainage in the granite mountainous area: a study from Sierra Nevada, USA. Geomorphology 64:97–116. doi:10.1016/j.geomorph.2004.06.003

    Google Scholar 

  • Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A, Morris AP (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9(5):2–8

    Google Scholar 

  • Fiori A, Russo D, Di Lazzaro M (2009) Stochastic analysis of transport in hillslopes: travel time distribution and source zone dispersion. Water Resour Res 45, W08435. doi:10.1029/2008WR007668

    Article  Google Scholar 

  • Fischer MP, Wilkerson MS (2000) Predicting the orientation of joints from fold shape: results of pseudo-three-dimensional modeling and curvature analysis. Geology 28(1):15–18

    Article  Google Scholar 

  • Forster C, Smith L (1988a) Groundwater flow systems in mountainous terrain: 1. numerical modelling technique. Water Resour Res 24(7):999–1010

    Article  Google Scholar 

  • Forster C, Smith L (1988b) Groundwater flow systems in mountainous terrain: 2. controlling factors. Water Resour Res 24(7):1011–1023

    Article  Google Scholar 

  • Freer J, McDonnell J, Beven KJ, Brammer D, Burns D, Hooper RP, Kendal C (1997) Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchments. Hydrol Process Lett 11:1347–1352

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs NJ

    Google Scholar 

  • Gabrielli CP, McDonnell JJ, Jarvis WT (2012) The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales. J Hydrol 450–451:117–133

    Article  Google Scholar 

  • Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44, W10403. doi:10.1029/2008WR006848

    Article  Google Scholar 

  • Gleeson T, Smith L, Moosdorf N, Hartmann J, Durr HH, Manning AH, van Beek LPH, Jellinek AM (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38, L02401. doi:10.1029/2010GL045565

    Google Scholar 

  • Graham RC, Schoeneberger PJ, Anderson MA, Sternberg PD, Tice KR (1997) Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Sci Soc Am J 61:516–522

    Article  Google Scholar 

  • Graham CB, van Verseveld W, Barnard HR, McDonnell JJ (2010) Estimating the deep seepage component of the hillslope and catchment water balance within a measurement uncertainty framework. Hydrol Process 24(25):3631–3647. doi:10.1002/hyp.7788

    Article  Google Scholar 

  • Haga H, Matsumoto Y, Matsutani J, Fujita M, Nishida K, Sakamoto Y (2005) Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. Water Resour Res 41, W12410. doi:10.1029/2005WR004236

    Article  Google Scholar 

  • Haneberg WC (1995) Steady state groundwater flow across idealized faults. Water Resour Res 31(7):1815–1820

    Article  Google Scholar 

  • Harr RD (1977) Water flux in soil and subsoil on a steep forested slope. J Hydrol 33:37–58

    Article  Google Scholar 

  • Hencher SR (2010) Preferential flow paths through soil and rock and their association with landslides. Hydrol Process 24:1610–1630. doi:10.1002/hyp.7721

    Article  Google Scholar 

  • Hencher SR, Lee SG, Carter TG, Richards LR (2011) Sheeting joints: characterisation, shear strength and engineering. Rock Mech Rock Eng 44:1–22. doi:10.1007/s00603-010-0100-y

    Article  Google Scholar 

  • Hodgkinson JH, McLoughlin S, Cox M (2006) The influence of geological fabric and scale on drainage pattern analysis in a catchment of metamorphic terrain: Laceys Creek, southeast Queensland, Australia. Geomorphology 81:394–407. doi:10.1016/j.geomorph.2006.04.019

    Article  Google Scholar 

  • Holtzhausen GR (1989) Origin of sheet structure: 1. morphology and boundary conditions. Eng Geol 27:225–278

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27(12):1107–1110

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205. doi:10.1111/j.1468-8123.2010.00278.x

    Google Scholar 

  • James AL, McDonnell JJ, Tromp-van Meerveld I, Peters NE (2010) Gypsies in the palace: experimentalist’s view on the use of 3-D physics based simulation of hydrological response. Hydrol Process 24:3878–3893. doi:10.1002/hyp.7819

    Article  Google Scholar 

  • Jamieson GT, Freeze RA (1983) Determining hydraulic conductivity distributions in a mountainous area using mathematical modeling. Ground Water 21(2):168–177

    Google Scholar 

  • Johnson RH (2007) Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed. Ground Water Monit Remediat 27(1):75–83

    Article  Google Scholar 

  • Kaehler CA, Hsieh PA (1994) Hydraulic properties of a fractured-rock aquifer, Lee Valley, San Diego County, California. US Geol Surv Water Supply Pap 2394, 64 pp

    Google Scholar 

  • Kahn KG, Ge S, Caine JS, Manning A (2008) Characterization of the shallow groundwater system in an alpine watershed: Handcart Gulch, Colorado, USA. Hydrogeol J 16(1):103–121. doi:10.1007/s10040-007-0225-6

    Article  Google Scholar 

  • Katsura S, Kosugi K, Mizutani T, Mizuyama T (2009) Hydraulic properties of variously weathered granitic bedrock in headwater catchments. Vadose Zone J 8(3):557–573. doi:10.2136/vzj2008.0142

    Article  Google Scholar 

  • Katsuyama M, Ohte N, Kabeya N (2005) Effects of bedrock permeability on hillslope and riparian groundwater dynamics in a weathered granite catchment. Water Resour Res 41, W01010. doi:10.1029/2004WR003275

    Article  Google Scholar 

  • Katsuyama M, Tani M, Nishimoto S (2010) Connection between streamwater mean residence time and bedrock groundwater recharge/discharge dynamics in weathered granite catchments. Hydrol Process 24:2287–2299. doi:10.1002/hyp.7741

    Article  Google Scholar 

  • Kim Y, Peacock DCP, Sanderson DJ (2004) Fault damage zones. J Struct Geol 26:503–517. doi:10.1016/j.jsg.2003.08.002

    Article  Google Scholar 

  • Kolyukhin D, Torabi A (2012) Statistical analysis of the relationships between fault attributes. J Geophys Res 117:B05406. doi:10.1029/2011JB008880

    Google Scholar 

  • Kosugi K, Katsura S, Katsuyama M, Mizuyama T (2006) Water flow processes in weathered granitic bedrock and their effects on runoff generation in a small headwater catchment. Water Resour Res 42. doi:10.1029/2005WR004275

  • Kosugi K, Fujimoto M, Katsura S, Kato H, Sando Y, Mizuyama T (2011) Localized bedrock aquifer distribution explains discharge from a headwater catchment. Water Resour Res 47. doi:10.1029/2010WR009884

  • Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23:145–161. doi:10.1111/j.1365-3121.2011.00998.x

    Article  Google Scholar 

  • Lopez DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31(6):1489–1503

    Article  Google Scholar 

  • Lopez DL, Smith L (1996) Fluid flow in fault zones: influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour Res 32. doi:10.1029/96WR02101

  • Mabee SB, Curry PJ, Hardcastle KC (2002) Correlation of lineaments to ground water inflows in a bedrock tunnel. Ground Water 40(1):37–43

    Article  Google Scholar 

  • Manning AH, Caine JS (2008) Developing a conceptual model of ground-water flow in an alpine watershed. In: Verplanck PL (ed) Understanding contaminants associated with mineral deposits. US Geol Surv Circ 1328, Reston, VA, pp 58–63

    Google Scholar 

  • Manning AH, Solomon DK (2005) An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block. Water Resour Res 41, W12412. doi:10.1029/2005WR004178

    Article  Google Scholar 

  • Marechal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40, W11508. doi:10.1029/2004WR003137

    Article  Google Scholar 

  • Martel SJ, Boger WA (1998) Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. J Geophys Res 103(B9):21229–21314

    Google Scholar 

  • McDonnell JJ, McGuire K, Aggarwal P, Beven KJ, Biondi D, Destouni G, Dunn S (2010) How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol Process 24:1745–1754

    Article  Google Scholar 

  • McGrath AG, Davison I (1995) Damage zone geometry around fault tips. J Struct Geol 17(7):1011–1024

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563. doi:10.1016/j.jhydrol.2006.04.020

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2010) Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities. Water Resour Res 46, W10543. doi:10.1029/2010WR009341

    Article  Google Scholar 

  • Miller DJ, Dunne T (1996) Topographic perturbations of regional stresses and consequent bedrock fracturing. J Geophys Res 101(B11):25523–25536

    Article  Google Scholar 

  • Mohr CH, Montgomery DR, Huber A, Bronstert A, Iroume A (2012) Streamflow response in small upland catchments in the Chilean coastal range to the Mw 8.8 Maule earthquake on 27 February 2010. J Geophys Res 117. doi:10.1029/2011JF002138

  • Morin RH, Savage WZ (2003) Effects of crustal stresses on fluid transport in fractured rock: case studies from northeastern and southwestern USA. Hydrogeol J 11:100–112. doi:10.1007/s10040-002-0235-3

    Article  Google Scholar 

  • Mortimer L, Aydin A, Simmons CT, Love AJ (2011) Is in situ stress important to groundwater flow in shallow fractured rock aquifers? J Hydrol 399:185–200. doi:10.1016/j. jhydrol.2010.12.034

    Article  Google Scholar 

  • Neves MA, Molales N (2007) Well productivity controlling factors in crystalline terrains of southeastern Brazil. Hydrogeol J 15:471–482. doi:10.1007/s10040-006-0112-6

    Article  Google Scholar 

  • Oda T, Suzuki M, Egusa T, Uchiyama Y (2012) Effect of bedrock flow on catchment rainfall-runoff characteristics and the water balance in forested catchments in Tanzawa Mountains, Japan. Hydrol Process. doi:10.1002/hyp.9497

    Google Scholar 

  • Olding NE, Harris SD, Knipe RJ (2004) Permeability scaling properties of fault damage zones in siliclastic rocks. J Struct Geol 26:1727–1747. doi:10.1016/j.jsg.2004.02.005

    Article  Google Scholar 

  • Owen R, Maziti A, Dahlin T (2007) The relationship between regional stress field, fracture orientation and depth of weathering and implications for groundwater prospecting in crystalline rocks. Hydrogeol J 15:1231–1238. doi:10.1007/s10040-007-0224-7

    Article  Google Scholar 

  • Roe GH (2005) Orographic precipitation. Ann Rev Earth Planet Sci 33:645–671. doi:10.1146/annurev.earth.33.092203.122541

    Article  Google Scholar 

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109, B04204. doi:10.1029/2003JB002855

    Google Scholar 

  • Salve R, Rempe DM, Dietrich WE (2012) Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Water Resour Res 48, W11528. doi:10.1029/2012WR012583

    Article  Google Scholar 

  • Savage WZ, Morin RH (2002) Topographic stress perturbations in southern Davis Mountains, West Texas: 1. polarity reversal of principal stresses. J Geophys Res 107(B12): doi:10.1029/2001JB000484

  • Savage WZ, Swolfs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91(B3):3677–3685

    Article  Google Scholar 

  • Shipton ZK, Cowie PA (2001) Damage zone and slip-surface evolution of um to km scales in high-porosity Navajo sandstone, Utah. J Struct Geol 23:1825–1844

    Article  Google Scholar 

  • Sidle RC, Tsuboyama Y, Noguchi S, Hosoda I, Fujieda M, Shimizu T (2000) Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol Process 14:369–385

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Smerdon B, Allen DM, Grasby S, Berg M (2009) An approach for predicting groundwater recharge in mountainous watersheds. J Hydrol 365(3–4):156–172. doi:10.1016/j.jhydrol.2008.11.023

    Article  Google Scholar 

  • Snow DT (1973) Mountain groundwater supplies. Mt Geol 10(1):19–24

    Google Scholar 

  • Stewart MK, Morgenstern U, McDonnell JJ (2010) Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin. Hydrol Process 24:1646–1659. doi:10.1002/hyp.7576

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15(2):213–224. doi:10.1007/s10040-006-0094-4

    Article  Google Scholar 

  • Surrette M, Allen DM, Journeay M (2008) Regional evaluation of hydraulic properties in variably fractured rock using hydrostructural domain approach. Hydrogeol J 16:11–30. doi:10.1007/s10040-007-0206-9

    Article  Google Scholar 

  • Tiedeman CR, Goode DJ, Hsieh PA (1998) Characterizing a ground water basin in a New England mountain and valley terrain. Ground Water 36(4):611–620. doi:10.1111/j.1745-6584

    Article  Google Scholar 

  • Torabi A, Berg SS (2011) Scaling of fault attributes: a review. Mar Pet Geol 28:1444–1460. doi:10.1016/j.marpetgeo.2011.04.003

    Article  Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4795–4812. doi:10.1029/JZ068i008p02354

    Article  Google Scholar 

  • Tromp-van Meerveld HJ, Peters NE, McDonnell JJ (2007) Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrol Process 21(6):750–769. doi:10.1002/hyp. 6265

    Article  Google Scholar 

  • Twidale CR (2004) River patterns and their meaning. Earth Sci Rev 67:159–218. doi:10.1016/j.earscirev.2004.03.001

    Article  Google Scholar 

  • Uchida T, Asano Y, Ohte N, Mizuyama T (2003) Seepage area and rate of bedrock groundwater discharge at a granitic unchanneled hillslope. Water Resour Res 39. doi:10.1029/2002WR001298

  • Uhlenbrook S, Frey M, Leibundgut C, Maloszewski P (2002) Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales, Water Resour Res 38. doi:10.1029/2001WR000938

  • Voeckler H, Allen DM (2012) Estimating regional scale fractured bedrock hydraulic conductivity using discrete fracture network (DFN) modelling. Hydrogeol J 20:1081–1100. doi:10.1007/s10040-012-0858-y

    Article  Google Scholar 

  • Welch LA, Allen DM (2012) Consistency of groundwater flow patterns in mountainous topography: implications for valley-bottom water replenishment and for defining groundwater flow boundaries. Water Resour Res 48, W05526. doi:10.1029/2011WR010901

    Article  Google Scholar 

  • Welch LA, Allen DM, van Meerveld HJ (2012) Deep groundwater contributions to mountain headwater streams and sensitivity to available recharge. Canadian Water Resour J 37. doi:10.4296/cwrj3703907

  • White AF, Blum AE, Schulz MS, Huntington TG, Peters NE, Stonestrom DA (2002) Chemical weathering of the Panola granite: solute and regolith elemental flues and the weathering rate of biotite. In: Hellmann R, Wood SA (eds) Water–rock interactions, ore deposits, and environmental geochemistry: a tribute to David A. Crerar. Geochem Soc Spec Pub 7, Geochemical Society, St. Louis, MO

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. Water Science and Application Series 9, Am Geophys Union, Washington, DC, pp 113–137

    Chapter  Google Scholar 

  • Winter TC, Rosenberry DO, LaBaugh JW (2003) Where does the ground water in small watersheds come from? Ground Water 41(7):989–1000. doi:10.1111/j.1745-6584.2003.tb02440.x

    Article  Google Scholar 

  • Winter TC, Buso CD, Shattuck PC, Harte PT, Vroblesky DA, Goode DJ (2008) The effect of terrace geology on ground-water movement and on the interaction of ground water and surface water on a mountainside near Mirror Lake, New Hampshire, USA. Hydrol Process 22:21–32. doi:10.1002/hyp.6593

    Article  Google Scholar 

  • Wolf J, Barthel R, Braun J (2008) Modeling ground water flow in alluvial mountainous catchments on a watershed scale. Ground Water 46(5):695–705. doi:10.1111/j.1745-6584.2008.00456.x

    Article  Google Scholar 

  • Worman A, Packman AI, Marklund L, Harvey JW, Stone SH (2007) Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geop Res Lett 34. doi:10.1029/2007GL029426

  • Yager EM, Turowski JM, Rickenmann D, McArdell BW (2012) Sediment supply, grain protrusion, and bedload transport in mountain streams. Geophys Res Lett 39, L10402. doi:10.1029/2012GL051654

    Google Scholar 

Download references

Acknowledgements

This manuscript greatly benefited from comments provided by Doug Stead (Simon Fraser University, Department of Earth Sciences) and H. J. (Ilja) van Meerveld (Faculty of Earth and Life Sciences) at VU University, Amsterdam. Reviewer comments provided by Patrick Lachassagne and an anonymous reviewer improved the manuscript and were also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Welch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, L.A., Allen, D.M. Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeol J 22, 1003–1026 (2014). https://doi.org/10.1007/s10040-014-1121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1121-5

Keywords

Navigation