Skip to main content
Log in

Hydrogeological research on intensively exploited deep aquifers in the ‘Loma de Úbeda’ area (Jaén, southern Spain)

Recherche hydrogéologique dans les aquifères profonds intensément exploités de la région de ‘Loma de Úbeda’ (Jaén, Espagne du Sud)

Investigación hidrogeológica en acuíferos profundos intensamente explotados en el área de ‘Loma de Úbeda’ (Jaén, sur de España)

Investigação hidrogeológica em aquíferos profundos intensamente explorados na área de ‘Loma de Úbeda’ (Jaén, sul de Espanha)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2013

Abstract

The intensive use of groundwater for irrigation in the area of Úbeda (‘Loma de Úbeda’, Jaén, southern Spain) has transformed an area of traditionally rain-fed dry farmland into fields with some of the highest olive oil productivity in the world. Early hydrogeological research studies, initiated just after the beginning of the groundwater exploitation, revealed that the water was collected from three different overlapping aquifers occupying an area of over 1,100 km2, with the lower aquifers located at depths from 300 to over 700 m in an area of 440 km2. Multidisciplinary research, based on geological characterization, and piezometric, hydrochemical and isotopic data, has led to a conceptual model of functioning in this complex hydrogeological system. The proposed model allows for the identification of the recharge areas, and the discharge, which is at present mainly associated with the groundwater pumping. Areas of mixing of waters from the different aquifers and the main hydrogeochemical processes affecting groundwater quality are described.

Résumé

L’utilisation intensive de l’eau souterraine pour l’irrigation dans la région de Úbeda (‘Loma de Úbeda’, Jaén, Espagne du Sud) a transformé une zone de terre cultivée sèche traditionnellement alimentée par la pluie en domaines ayant parmi les plus fortes productivités en huile d’olive au monde. Les premières études hydrogéologiques, commencées immédiatement après le début de l’exploitation de l’eau souterraine, ont révélé que l’eau était prélevée dans trois aquifères différents superposés s’étendant sur une aire d’environ 1 100 km2, les aquifères inférieurs étant situés à des profondeurs comprises entre 300 m et plus de 700 m sur une superficie de 440 km2. Une recherche multidisciplinaire, basée sur une caractérisation géologique et des données piézométriques, hydrochimiques et isotopiques, a conduit à un modèle conceptuel du fonctionnement de ce système hydrogéologique complexe. Le modèle proposé autorise l’identification des zones de recharge et de décharge, celle-ci surtout associée actuellement au pompage de l’eau souterraine. Des zones de mélange des eaux provenant des différents aquifères et les principaux processus hydrogéochimiques influençant la qualité de l’eau souterraine sont décrits.

Resumen

La explotación intensiva del agua subterránea para riego, en la comarca de la Loma de Úbeda (Jaén, sur de España), ha permitido transformar un área de cultivo tradicional de secano en una de las zonas con mayor productividad de aceite de oliva del mundo. Los primeros trabajos de investigación hidrogeológica, iniciados con posterioridad al comienzo de la explotación del agua subterránea, han permitido comprobar que ésta proviene de tres acuíferos superpuestos que se extienden en un área superior a 1100 km2 con los acuíferos inferiores situados entre 300 y más de 700 m de profundidad en unos 440 km2. La investigación multidisciplinar, basada en datos piezométricos, hidroquímicos e isotópicos que se ha realizado ha permitido establecer un modelo conceptual de funcionamiento en este complejo sistema hidrogeológico El modelo propuesto permite identificar las áreas de recarga y descarga, las cuales están en la actualidad asociadas principalmente con el bombeo del agua subterránea. Se describen las áreas de mezcla de aguas de diferentes acuíferos y los principales procesos hidrogeoquímicos que afectan la calidad del agua subterránea.

Resumo

O uso intensivo de água subterrânea para rega na área de Úbeda (“Loma de Úbeda”, Jaén, sul da Espanha) transformou uma área de terras tradicionalmente de sequeiro em olivais cujas produtividades de azeite estão entre as mais elevadas no mundo. Os primeiros estudos hidrogeológicos, iniciados logo após o início da exploração subterrânea, revelaram que a água era extraída de três aquíferos diferentes que se sobrepõem e que ocupam uma área superior a 1,100 km2, com os aquíferos inferiores localizados a profundidades de 300 a mais de 700 m, numa área de 440 km2. A investigação multidisciplinar, baseada na caraterização geológica e em dados piezométricos, hidroquímicos e isotópicos, resultou num modelo conceptual do funcionamento deste sistema hidrogeológico complexo. O modelo proposto permite a identificação das áreas de recarga e descarga, estas últimas principalmente associadas às extrações de água. Descrevem-se aqui as zonas de mistura de águas dos diferentes aquíferos e os principais processos hidrogeoquímicos que afetam a qualidade das águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angoloti JM, Gómez-García LM, Bellver A, Gollonet J (2008) Balance tras quince años de explotación del acuífero jurásico profundo de la Loma de Úbeda y perspectivas de futuro para uso sostenible (partes I y II) [Balance of the deep Jurassic aquifer in the Loma de Úbeda after fifteen years of exploitation and future prospects for its sustainable use (parts I and II)]. Rev Agríc Ganadera 326: 23–28 and 327: 23–29

  • Araguás-Araguás L, Rubio-Campos JC, González-Ramón A, Pérez-Zabaleta E, Plata-Bedmar A, Núñez I (2004) Geochemical and isotopic evolution of groundwater along major flow paths in the confined Jurassic aquifer of Úbeda, southern Spain. International Workshop on the Application of Isotope Techniques in Hydrological and Environmental Studios, UNESCO, Paris

    Google Scholar 

  • Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429

    Article  Google Scholar 

  • CEDEX (2003) Realización de estudios en la Unidad Hidrogeológica 05.23 (Úbeda) [Studies in the 05.23 (Úbeda) Hydrogeological Unit]. Centre for Studies and Experimentation of Public Engineering, Int Rep 52‐402‐1‐031, pp 101 Madrid

  • CEDEX (2006) Estudio Hidrogeológico en la masa de agua “Úbeda” 05.23 (Úbeda) [Hydrogeological study in the “Úbeda” 05.23 groundwater body]. Centre for Studies and Experimentation of Public Engineering, Int Rep 52‐405‐1‐034 pp 85 Madrid

  • Crandall CHA, Katz B, Hirten JJ (1999) Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA. Hydrogeol J 7:454–467

    Article  Google Scholar 

  • Custodio E, Llamas MR, Hernández-Mora N, Martínez-Cortina L, Martínez-Santos P (2009) Issues related to intensive groundwater use. In: Garrido A, Llamas MR (eds) Water Policy in Spain. CRC PRESS. http://www.rac.es/ficheros/doc/00710.pdf

  • Downing RA, Williams BPJ (1969) The groundwater hydrology of the Lincolnshire Limestone. Water Resources Board, Reading, UK

    Google Scholar 

  • Downing RA, Smith DB, Pearson FJ, Monkhouse RA, Otlet RL (1977) The age of groundwater in the Lincolnshire Limestone England and its relevance to the flow mechanism. J Hydrol 33:201–216

    Article  Google Scholar 

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752

    Article  Google Scholar 

  • Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer. Engl Geochim Cosmochim Acta 46:2069–2081

    Article  Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • González Asensio A, Domínguez Prats P, Franqueza Montes PA (2003) Sistema Costero de Sierra de Gádor. Observaciones sobre su funcionamiento y relaciones con los ríos Adra y Andarax, y con el mar [Coastal system of Sierra de Gádor: observations about its functioning and interactions with Adra and Andarax rivers and the sea]. Proc. Coastal aquifers intrusion technology, vol 1, Alicante, Spain, March 2003, pp 423–435

  • González-Ramón A, Gollonet J, Rubio-Campos JC, Núñez I (2007) Los acuíferos de la Loma de Úbeda (Jaén) [The aquifers in the Loma de Úbeda (Jaén)]. Geological Survey of Spain, Madrid

  • González-Ramón A, Gollonet J, Peinado T, Moreno JA, Núñez I, Heredia J, Rubio-Campos JC (2008) Relación hidrogeológica entre el acuífero jurásico de la Loma de Úbeda y el río Guadalimar [Hydrogeological interactions between the Jurassic aquifers of the Loma de Úbeda and the Guadalimar River]. In: López-Geta JA, Rubio JC, y Martín-Machuca M (eds) VII Simposio del Agua en Andalucía. Geological Survey of Spain, 1:251–262

  • Katz BG (2004) Sources of nitrate contamination and age of water in large karstic springs of Florida. Environ Geol 46:689–706

    Article  Google Scholar 

  • Llamas MR, Custodio E (2003) Intensive use of groundwater: challenges and opportunities. Balkema, Lisse, The Netherlands

    Google Scholar 

  • Llamas MR, Martínez-Santos P (2005) Intensive groundwater use: silent revolution and potential source of social conflicts. J Water Resour Plan Manag 131:337–341

    Article  Google Scholar 

  • Marques da Silva MA (1990) Hidrogeología del sistema multiacuífero Cretácico del Bajo Vouga: Aveiro (Portugal) [Hydrogeology of the Cretaceous multi aquifer system of the low Vouga: Averiro (Portugal)]. PhD Thesis, Univ. de Barcelona, Spain

  • Mejías M, García-Orellana J, Plata JL, Marina M, García-Solsona E, Ballesteros B, Marsqué P, López J, Fernández-Arrojo C (2008) Methodology of hydrogeological characterization of deep carbonate aquifers as potential reservoirs of groundwater. Case of study: the Jurassic aquifer of El Maestrazgo (Castellón, Spain). Environ Geol 54:521–536

    Article  Google Scholar 

  • Moore PJ, Martín JB, Screaton EJ (2009) Geochemical and statistical evidence of recharge, mixing, and control on spring discharge in an eogenetic karst aquifer. J Hydrol 376:443–455

    Article  Google Scholar 

  • Orviz F, Castelló M, R y Martínez del Olmo W (1976) Memoria y mapa geológico de España de la hoja Santisteban del Puerto (886) E. 1:50.000 [Memory and geological map of Spain (886 -Santisteban del Puerto) E. 1: 50 000]. 2ª serie. 1ª edición. Geologycal Survey of Spain. http://www.igme.es/internet/cartografia/cartografia/magna50.asp?c=s#PDFs

  • Pastor M, Castro J, Mariscal MJ, Vega V, Orgaz F, Fereres E, Hidalgo J (1999) Respuestas del olivar tradicional a diferentes estrategias y dosis de agua de Riego [Traditional olive responses to different strategies and irrigation water doses]. Invest Agrar Prod Veg 14(3):393–404

    Google Scholar 

  • Plummer LN, Sprinkle L (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9:127–150

    Article  Google Scholar 

  • Ritorto M, Screaton EJ, Martin JB, Moore PJ (2009) Relative importance and chemical effects of diffuse and focused recharge in an eogenetic karst aquifer: an example from the unconfined upper Floridan aquifer, USA. Hydrogeol J 17:1687–1698

    Article  Google Scholar 

  • Rodríguez‐Arévalo J, Pérez‐Zabaleta E, Díaz‐Teijeiro MF, Heredia J (2007) A contribution to the characterization of a deeply confined carbonate aquifer in Úbeda (Southern Spain) from a reinterpretation of existing geological and geophysical data and new data on environmental isotopes. In: Ribeiro, L., Chambel, A, Condesso de Melo, M.T. (Eds). XXXV Congress of the International Assocciation of Hydrogeologists on Groundwater and Ecosystems (Lisbon, Septembre 2007). Published on CD‐ROM.

  • Roldan FJ (1995) Evolución neógena de la Cuenca del Guadalquivir [Neogene evolution of the Guadalquivir basin]. PhD Thesis, Univ. de Granada, Spain

  • Sacks LA, Tihansky AB (1996) Geochemical and isotopic composition of Ground Water, with emphasis on sources of sulphate, in the Upper Floridan Aquifer an Intermediate Aquifer System in Southwest Florida. U. S. Geological Survey. Water-Resources Investigations Report, pp 96-4146. Tallahassee, Florida. http://fl.water.usgs.gov/PDF_files/wri96_4146_sacks.pdf

  • Sánchez-Aguililla FM, Plata Torres JL, Peláez Martínez A (2000) Determinación de la profundidad de un acuífero en Jaén mediante integración de datos sísmicos, eléctricos y de sondeos mecánicos [Determining of an aquifer depth in Jaen by integration of seismic, electrical and mechanical surveys]. In: Olmo Alarcón M, López Geta JA (eds) Actualidad de las técnicas geofísicas aplicadas en Hidrogeología. Geological Survey of Spain-Diputación de Granada, Madrid

  • Toth DJ, Karz BG (2006) Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs. Hydrogeol J 14:1060–1080

    Article  Google Scholar 

Download references

Acknowledgements

The research efforts in this report are part of a cooperative agreement between the Guadalquivir River Basin Authority (CHG) and the Geological Survey of Spain (IGME). Isotope analyses were performed at the Isotopic Laboratory Applications of the CEDEX in the framework of an agreement between IGME-CEDEX for a Joint Laboratory of Isotope Science and Technology. We thank Javier Serrano, Juan Antonio López Geta and Juan Carlos Rubio Campos for their interest in promoting the development of these studies. We are likewise grateful to Alberto Moreno for his contribution in field sampling, to Javier Heredia, Alfredo Garcia de Domingo and Francisco Roldán for their field assistance and geological revision, to Marife Díaz Tejeiro for her assistance in isotopic analysis, and to David Pulido for his review of the translation of this report. We thank the reviewers for comments that contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio González-Ramón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Ramón, A., Rodríguez-Arévalo, J., Martos-Rosillo, S. et al. Hydrogeological research on intensively exploited deep aquifers in the ‘Loma de Úbeda’ area (Jaén, southern Spain). Hydrogeol J 21, 887–903 (2013). https://doi.org/10.1007/s10040-013-0957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0957-4

Keywords

Navigation