Skip to main content
Log in

A comparison of recharge rates in aquifers of the United States based on groundwater-age data

Comparaison des taux de recharge d’aquifères basée sur des données d’âge de nappe, Etats Unis

Una comparación de los ritmos de recarga en acuíferos de los Estados Unidos basados en datos de edad del agua subterránea

Uma comparação das taxas de recarga em aquíferos dos Estados Unidos, baseada em dados de datação da água subterrânea

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

Résumé

On présente une vue d’ensemble des données disponibles sur l’âge d’une nappe et leurs implications pour évaluer les taux et temps de recharge d’aquifères libres sélectionnés, Etats Unis. Les distributions d’âge apparent dans des aquifères, déduites du dosage de carbone chloro-fluorés, hexafluorure de soufre, tritium/helium-3 et radiocarbone dans 565 puits de 45 réseaux, ont été utilisés pour calculer les taux de recharge de la nappe. Les échelles des temps de recharge ont été définies par 1,873 mesures de tritium distribuées et 102 mesures de radiocarbone sur un réseau de 27 puits. La distribution des temps de rechargea été établie par 1,873 mesures du tritium et 102 mesures du radiocarbone sur un réseau de 27 puits. Les taux de recharge s’échelonnent de moins de 10 mm/an à 1,200 mm/an dans des aquifères sélectionnés sur la base des distributions verticales d’âge mesurées et supposant des gradients d’âge exponentiels. Sur une base régionale, les taux de recharge donnés par des traceurs sur une eau de nappe jeune montrent une corrélation inverse forte avec la température annuelle moyenne de l’air et une corrélation directe forte avec la précipitation annuelle moyenne. La comparaison de la recharge déduite des âges de la nappe avec la recharge déduite du débit de base montre des caractéristiques générales similaires mais des différences locales notables. Des résultats de cette compilation démontrent que des estimations basées sur l’âge peuvent fournir des indications utiles sur la variabilité spatiale et temporelle de la recharge à une échelle nationale, et sur les facteurs contrôlant cette variabilité. Des estimations de recharge basées sur un âge local fournissent donnée empirique et information requises pour tester et améliorer des méthodes d’avantage basées sur la modélisation spatiale.

Resumen

Se presenta una visión general de los datos existentes de edad de agua subterránea y su implicancia para evaluar los ritmos y las escalas temporales de la recarga en sistemas acuíferos no confinados seleccionados de Estados Unidos. Se utilizaron las distribuciones de edad aparente en los acuíferos determinada a partir de medidas clorofluorocarbonos, hexafluoruro de azufre, tritio/helio-3, y medidas de radiocarbono de 565 pozos en 45 redes para calcular los ritmos de la recarga de las aguas subterráneas. Las escalas temporales de la recarga fueron definidas a través de 1,873 medidas de tritio distribuidas y 102 medidas de radiocarbono a partir de 27 redes de pozos. Los ritmos de recarga variaron de < 10 a 1,200 mm/año en los acuíferos seleccionados en base a la distribución de medidas de edades verticales y suponiendo gradientes exponenciales de edad. Sobre una base regional, el ritmo de recarga basado en trazadores de agua subterráneas jóvenes, exhibieron una correlación significativa inversa con la temperatura media anual del aire y una correlación significativa positiva con la precipitación media anual. La comparación de la recarga a partir de las edades de agua subterránea con la recarga a partir de la evaluación del flujo base de las corrientes mostraron un patrón general similar pero con diferencias locales sustanciales. Los resultados de esta compilación demuestran que las estimaciones de la recarga basada en la edad pueden proveer puntos una comprensión útil de las variabilidades espaciales y temporales en la recarga en una escala nacional y los factores que controlan esa variabilidad. Las estimaciones de la recarga basada en edades locales provee datos empíricos e información de procesamiento que son necesarios para probar y mejorar más espacialmente los métodos completos basados en modelos.

Resumo

Apresenta-se uma revisão de dados de datação de água subterrânea existentes, com vista à avaliação de graus e escalas temporais de recarga numa selecção de sistemas aquíferos livres dos Estados Unidos. Para calcular as taxas de recarga de água subterrânea foram usadas distribuições de idade aparente de aquíferos, determinadas com recurso a medidas de clorofluorocarboneto, hexafluoreto de enxofre, trítio/hélio-3 e radiocarbono em 565 poços de 45 campos de captação. As escalas temporais da recarga foram definidas por 1,873 medições distribuídas de trítio e 102 medições de radiocarbono em 27 campos de captação. As taxas de recarga variaram de <10 até 1,200 mm/ano em aquíferos seleccionados com base em medidas da distribuição vertical da idade e assumindo gradientes de idade exponenciais. Numa base regional, as taxas de recarga calculadas com base em traçadores em águas subterrâneas recentes mostrou uma significativa correlação inversa com a temperatura média anual do ar e uma correlação positiva significativa com a precipitação média anual. A comparação da recarga derivada das idades da água subterrânea com a recarga avaliada a partir do escoamento fluvial de base mostrou padrões gerais similares mas também substanciais diferenças locais. Os resultados desta compilação demonstram que as estimativas de recarga baseadas na idade podem fornecer perspectivas úteis sobre a variabilidade espacial e temporal da recarga a uma escala nacional e sobre os factores que controlam essa variabilidade. As estimativas de recarga baseadas na idade local fornecem dados empíricos e informação sobre processos que são necessários para testar e melhorar os métodos baseados em modelos espacialmente mais completos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aeschbach-Hertig W, Stute M, Clark JF, Reuter RF, Schlosser P (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia aquifer (Maryland, USA). Geochim Cosmochim Acta 66:797–817

    Article  Google Scholar 

  • Anning DW, Thiros SA, Bexfield LM, McKinney TS, Green JM (2009) Southwest principal aquifers regional groundwater quality assessment. US Geol Surv Fact Sheet 2009–3015, 4 pp

  • Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A (2008) Incorporating water table dynamics in climate modeling: 3. simulated groundwater influence on coupled land-atmosphere variability. J Geophys Res D07103. doi:10.1029/2007JD009087

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Ann Rev Earth Plan Sci 36:121–152

    Google Scholar 

  • Bexfield LM, Anderholm SK (2002) Estimated water-level declines in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico, predevelopment to 2002. US Geol Surv Water-Resour Invest Rep 2002–4233, 1 sheet

  • Bierkens MFP, van den Hurk BJJM (2007) Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys Res Lett L02402. doi:10.1029/2006GL028396

  • Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179, and an erratum in Hydrogeol J (2002) 10:438–439

  • Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland. Water Resour Res 31:2319–2339

    Article  Google Scholar 

  • Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res. doi:10.1029/2001WR000663

    Google Scholar 

  • Böhlke JK, Verstraeten IM, Kraemer TF (2007a) Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Appl Geochem 22:152–174

    Article  Google Scholar 

  • Böhlke JK, O’Connell ME, Prestegaard KL (2007b) Groundwater stratification and delivery of nitrate to an incised stream under varying flow conditions. J Environ Qual 36:664–680

    Article  Google Scholar 

  • Böhlke JK, Hatzinger PB, Sturchio NC, Gu B, Abbene I, Mroczkowski SJ (2009) Atacama perchlorate as an agricultural contaminant in groundwater: isotopic and chronologic evidence from Long Island, New York. Environ Sci Technol 43:5619–5625

    Article  Google Scholar 

  • Burow KR, Shelton JL, Dubrovsky NM (1998) Occurrence of nitrate and pesticides in groundwater beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993–1995. US Geol Surv Water Resour Invest Rep 97–4284, 51 pp

  • Burow KR, Panshin SY, Dubrovsky NM, Vanbrocklin D, Fogg GE (1999) Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in groundwater in the eastern San Joaquin Valley, California: analysis of chemical data and groundwater flow and transport simulations. US Geol Surv Water Resour Invest Rep 99–4059, 57 pp

  • Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15:991–1007

    Article  Google Scholar 

  • Burow KR, Jurgens BC, Kauffman LJ, Phillips, SP, Dalgish BA, Shelton JL (2008) Simulations of groundwater flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008–5035, 41 pp

  • Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030

    Article  Google Scholar 

  • Charles EG, Storck DA, Clawges RM (2001) Hydrology of the unconfined aquifer system, Maurice River area: Maurice and Cohansey River basins, New Jersey, 1994–95. US Geol Surv Water-Resour Invest Rep 01–4229, 5 sheets

  • Clark JF, Davisson ML, Hudson GB, MacFarlane PA (1998) Nobel gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. J Hydrol 211:151–167

    Article  Google Scholar 

  • Coes AL, Spruill TB, Thomasson MJ (2007) Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol J 15:773–788

    Article  Google Scholar 

  • Cook PG, Böhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston

    Google Scholar 

  • Cook PG, Solomon DK, Plummer LN, Busenberg E, Schiff SL (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour Res 31:425–434

    Article  Google Scholar 

  • Cook PG, Solomon DK, Sanford WE, Busenberg E, Plummer LN, Poreda RJ (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour Res 32:1501–1509

    Article  Google Scholar 

  • Cox SE, Kahle SC (1999) Hydrogeology, groundwater quality, and sources of nitrate in lowland glacial aquifers of Whatcom County, Washington, and British Columbia, Canada. US Geol Surv Water Resour Invest Rep 98–4195, 251 pp

  • Crosbie R, Jolly I, Leaney F, Petheram C, Wohling D (2010) Review of Australian Groundwater Recharge Studies. CSIRO, Clayton, Australia, 81 pp

  • Cushing EM, Kantrowitz IH, Taylor KR (1973) Water resources of the Delmarva Peninsula. US Geol Surv Prof Pap 822, 58 pp

    Google Scholar 

  • Darling WG, Edmunds WM, Smedley PL (1997) Isotopic evidence for paleowaters in the British Isles. Appl Geochem 12:813–829

    Article  Google Scholar 

  • Debrewer LM, Ator SW, Denver JM (2007) Factors affecting spatial and temporal variability in nutrient and pesticide concentrations in the surficial aquifer on the Delmarva Peninsula. US Geol Surv Sci Invest Rep 2005–5257, 44 pp

  • Delin GN, Healy RW, Landon MK, Böhlke JK (2000) Effects of topography and soil properties on recharge at two sites in an agricultural field. J Am Water Resour Assoc 36:1401–1416

    Article  Google Scholar 

  • Douglas AA, Osiensky JL, Keller CK (2007) Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. J Hydrol 334:502–512

    Article  Google Scholar 

  • Dugan JT, Zelt RB (2000) Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951–80. US Geol Surv Water Supply Pap 2427, 81 pp

    Google Scholar 

  • Dunkle SA, Plummer LN, Busenberg E, Phillips PJ, Denver JM, Hamilton PA, Michel RL, Coplen TB (1993) Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour Res 29:3837–3860

    Article  Google Scholar 

  • Eichinger L (1983) A contribution to the interpretation of 14 C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25:347–356

    Google Scholar 

  • Ekwurzel B, Schlosser P, Smethie WM, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30:1693–1708

    Article  Google Scholar 

  • Fahlquist, L (2003) Groundwater quality of the southern High Plains aquifer, Texas and New Mexico, 2001. US Geol Surv Open File Rep 2003–345, 59 pp

  • Faunt CC (2009) Groundwater availability of the central valley aquifer, California. US Geol Surv Prof Pap 1766, 225 pp

    Google Scholar 

  • Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the United States. J Environ Qual 37:1051–1063

    Article  Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Gannett MW, Lite KE Jr, Morgan DS, Collins CA (2001) Groundwater hydrology of the Upper Deschutes basin, Oregon. US Geol Surv Water Resour Invest Rep 00–4162, 77 pp

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534

    Article  Google Scholar 

  • Genereux DP, Hooper RP (1998) Oxygen and hydrogen isotopes in rainfall-runoff studies. In: Kendall C, McDonnell JJ (eds) Isotopes in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Green CT, Fisher LH, Bekins BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37:1073–1085

    Article  Google Scholar 

  • Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Kauffman LJ, Denver JM, Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual 37:994–1009

    Article  Google Scholar 

  • Hamlin SN, Belitz K, Kraja S, Dawson B (2002) Groundwater quality in the Santa Ana watershed, California: overview and data summary. US Geol Surv Water Resour Invest Rep 02–4243, 55 pp

  • Healy RW, Winter TC, LaBaugh JW, Franke OL (2007) Water budgets: foundations for effective water-resources and environmental management. US Geol Surv Circ 1308, 90 pp

    Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New York

    Google Scholar 

  • Hinkle SR (1997) Quality of shallow groundwater in alluvial aquifers of the Willamette Basin, Oregon, 1993–95. US Geol Surv Water Resour Invest Rep 97–4082–B, 48 pp

  • Hinkle SR (2009) Tritium/helium-3 apparent ages of shallow ground water, Portland Basin, Oregon, 1997–98. US Geol Surv Sci Invest Rep 2009–5057, 8 pp

  • Hinkle SR, Böhlke JK, Duff JH, Morgan DS, Weick RJ (2007) Aquifer-scale controls on the distribution of nitrate and ammonium in groundwater near La Pine, Oregon, USA. J Hydrol 333:486–503

    Article  Google Scholar 

  • Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Proc Sugawara Festival on Recent Researches in the Fields of Atmospheric, Hydrosphere, and Nuclear Geochemistry, Maruzen, Tokyo, pp 263–283

  • International Atomic Energy Agency (IAEA) (2006) Use of chlorofluorocarbons in hydrology: a guidebook. STI/PUB/1238, IAEA, Vienna, 277 pp

  • Izbicki JA, Michel RL (2004) Movement and age of groundwater in the western part of the Mojave Desert, southern California, USA. US Geol Surv Water Resour Invest Rep 03–4314, 35 pp

  • Jurgens BC, Burow KR, Dalgish BA, Shelton, JL (2008) Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008–5156, 78 pp

  • Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston

    Google Scholar 

  • Katz BG, Crandall CA, Metz PA, McBride WS, Berndt MP (2007) Chemical characteristics, water sources and pathways, and age distribution of ground water in the contributing recharge area of a public-supply well near Tampa, Florida, 2002–05. US Geol Surv Sci Invest Rep 2007–5139, 83 pp

  • Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344

    Article  Google Scholar 

  • Kauffman LJ, Baehr AL, Ayers MA, Stackelberg PE (2001) Effects of land use and travel time on the distribution of nitrate in the Kirkwood-Cohansey aquifer system in southern New Jersey. US Geol Surv Water Resour Invest Rep 2001–4117, 49 pp

  • Kennedy CD, Genereux DP (2007) 14C groundwater age and the importance of chemical fluxes across aquifer boundaries in confined Cretaceous aquifers of North Carolina, USA. Radiocarbon 49:1181–1203

    Google Scholar 

  • Klump S, Grundl T, Purtschert R, Kipfer R (2008) Groundwater and climate dynamics derived from noble gas, 14C, and stable isotope data. Geology 36(5):395-398. doi:10.1130/G24604A.1

    Google Scholar 

  • Kolpin DW, Burkhart MR, Thurman EM (1993) Hydrogeologic, water-quality, and land-use data for the reconnaissance of herbicides and nitrate in near-surface aquifers of the Mid continental United States, 1991. US Geol Surv Open File Rep 93–114, 61 pp

  • Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69:3857–3872

    Article  Google Scholar 

  • Lacombe PJ, Rosman R (1995) Hydrology of the unconfined aquifer system in the upper Maurice River basin and adjacent areas in Gloucester County, New Jersey, 1986–87. US Geol Surv Water-Resour Invest Rep 92–4128, 5 sheets

  • Landon MK, Clark BR, McMahon PB, McGuire VL, Turco MJ (2008) Hydrogeology, chemical characteristics, and transport processes in the zone of contribution of a public-supply well in York, Nebraska. US Geol Surv Sci Invest Rep 2008–5050, 149 pp

  • Le Gal La Salle C, Marlin C, Leduc C, Taupin JD, Massault M, Favreau G (2001) Renewal rate estimation of groundwater based on radioactive tracers (3H, 14C) in an unconfined aquifer in a semiarid area, Iullemeden Basin, Niger. J Hydrol 254:145–156

    Article  Google Scholar 

  • Lindsey BD, Phillips SW, Donnelly CA, Speiran GK, Plummer LN, Böhlke JK, Focazio MJ, Burton WC, Busenberg E (2003) Residence times and nitrate transport in groundwater discharging to streams in the Chesapeake Bay watershed. US Geol Surv Water Resour Invest Rep 2003–4035, 201 pp

  • Loosli HH (1982) A dating method with 39Ar. Earth Planet Sci Lett 63:51–62

    Article  Google Scholar 

  • Lopes TJ, Hoffmann JP (1997) Geochemical analyses of groundwater ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona. US Geol Surv Water Resour Invest Rep 96–4190, 42 pp

  • Ma L, Castro MC, Hall CM (2004) A late Pleistocene-Holocene noble gas paleotemperature record in southern Michigan. Geophys Res Lett. doi:10.1029/2004GL021766

    Google Scholar 

  • Manning AH, Solomon DK, Thiros SA (2005) 3H/3He age data in assessing the susceptibility of wells to contamination. Ground Water 43:353–367

    Article  Google Scholar 

  • Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 pp

    Google Scholar 

  • McGuire VL (2009) Changes in water levels and storage in the High Plains aquifer, predevelopment to 2007. US Geol Surv Fact Sheet 2009–3005, 2 pp

  • McMahon PB, Böhlke JK (1996) Denitrification and mixing in a stream-aquifer system: effects on nitrate loading to surface water. J Hydrol 186:105–128

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Christenson SC (2004a) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Lehman TM (2004b) Vertical gradients in water chemistry and age in the southern High Plains aquifer, Texas, 2002. US Geol Surv Sci Invest Rep 2004–5053, 53 pp

  • McMahon PB, Böhlke JK, Carney CP (2007) Vertical gradients in water chemistry and age in the northern High Plains aquifer, Nebraska, 2003. US Geol Surv Sci Invest Rep 2006–5294, 58 pp

  • McMahon PB, Burow KR, Kauffman LJ, Eberts SM, Böhlke JK, Gurdak JJ (2008a) Simulated response of water quality in public supply wells to land use change. Water Resour Res. doi:10.1029/2007WR006731

    Google Scholar 

  • McMahon PB, Böhlke JK, Kauffman LJ, Kipp KL, Landon MK, Crandall CA, Burow KR, Brown CJ (2008b) Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour Res. doi:10.1029/2007WR006252

    Google Scholar 

  • Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In: Proc 8th Int Conf on Radiocarbon Dating, vol 1, Royal Society of New Zealand, Wellington, pp 342–352

  • Mook WG, van der Plicht J (1999) Reporting 14C activities and concentrations. Radiocarbon 41:227–239

    Google Scholar 

  • Morgan DS, Hinkle SR, Weick RJ (2007) Evaluation of approaches for managing nitrate loading from on-site wastewater systems near La Pine, Oregon. US Geol Surv Sci Invest Rep 2007–5237, 66 pp

  • Morrow WS (2003) Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin. US Geol Surv Water Resour Invest Rep 02–4293, 34 pp

  • Mullaney JR, Grady SJ (1997) Hydrogeology and water quality of a surficial aquifer underlying an urban area, Manchester, Connecticut. US Geol Surv Water Resour Invest Rep 97–4195, 40 pp

  • National Climatic Data Center (2010) http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?directive=prod_select2&prodtype=CLIM81&subrnum=. Cited 11 January 2010

  • Nelms DL, Harlow GE, Plummer LN, Busenberg E (2003) Aquifer susceptibility in Virginia, 1998–2000. US Geol Surv Water Res Invest Rep 2003–4278, 58 pp

  • Nolan BT, Healy RW, Taber PE, Perkins K, Hitt KJ, Wolock DM (2007) Factors influencing groundwater recharge in the eastern United States. J Hydrol 332:187–205

    Article  Google Scholar 

  • Orndorff RC, Craigg S, D’Erchia T, Edwards L, Fullerton D, Murchey B, Ruppert L, Soller D, Tew B (2007) Divisions of geologic time –major chronostratigraphic and geochronologic units. US Geol Surv Fact Sheet 2007–3015, 2 pp

  • Osenbrück K, Fiedler S, Knöller K, Weise SM, Sultenfuss J, Oster H, Strauch G (2006) Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany. Water Resour Res. doi:10.1029/2006WR004977

    Google Scholar 

  • Pearson FJ, White DE (1967) Carbon 14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resour Res 3:251–261

    Article  Google Scholar 

  • Phillips FM, Tansey MK, Peeters LA, Cheng S, Long A (1989) An isotopic investigation of groundwater in the central San Juan basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour Res 25:2259–2273

    Article  Google Scholar 

  • Plummer LN (1993) Stable isotope enrichment in paleowaters of the southeast Atlantic Coastal Plain, United States. Science 262:2016–2020

    Article  Google Scholar 

  • Plummer LN, Sprinkle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9:127–150

    Article  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26:1981–2014

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0. US Geol Surv Water Resour Invest 94–4169, 130 pp

  • Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93–111

    Article  Google Scholar 

  • Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2003) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388

    Google Scholar 

  • Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004) Geochemical characterization of groundwater flow in the Santa Fe Group aquifer system, Middle Rio Grande basin, New Mexico. US Geol Surv Water Resour Invest Rep 03–4131, 395 pp

  • Pope DA, Clark DW, Shapiro SD, Lawlor SM (1999) Hydrogeologic, geophysical, water-quality, transient-tracer, and flow-model analysis of groundwater flow near Dillon, Montana. US Geol Surv Water Resour Invest Rep 98–4250, 75 pp

  • Puckett LJ, Cowdery TK (2002) Transport and fate of nitrate in a glacial outwash aquifer in relation to groundwater age, land use practices, and redox processes. J Environ Qual 31:782–796

    Article  Google Scholar 

  • Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292

    Article  Google Scholar 

  • Puckett LJ, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour Res. doi:10.1029/2001WR000396

    Google Scholar 

  • Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour Res 30:421–433

    Article  Google Scholar 

  • Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Groundwater availability in the United States. US Geol Surv Circ 1323, 70 pp

    Google Scholar 

  • Robinson JL (2002) Groundwater quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999–2000. US Geol Surv Water Resour Invest Rep 2002–4052, 37 pp

  • Rowe GL, Shapiro SD, Schlosser P (1999) Use of environmental tracers to evaluate groundwater age and water quality trends in a buried-valley aquifer, Dayton area, southwestern Ohio. US Geol Surv Water Resour Invest Rep 99–4113, 81 pp

  • Rupert MG, Plummer LN (2009) Groundwater quality, age, and probability of contamination, Eagle River Watershed valley-fill aquifer, north-central Colorado, 2006–2007. US Geol Surv Sci Invest Rep 2009–5082, 59 pp

  • Saad DA (1997) Effects of land use and geohydrology on the quality of shallow ground water in two agricultural areas in the western Lake Michigan drainages, Wisconsin. US Geol Surv Water Resour Invest Rep 96–4292, 69 pp

  • Saad DA (2008) Agriculture related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin. J Environ Qual 37:209–225

    Article  Google Scholar 

  • Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. calibration of a groundwater flow model. Hydrogeol J 12:389–407

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Article  Google Scholar 

  • Schaller MF, Fan Y (2009) River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J Geophys Res, D04103. doi:10.1029/2008JD010636

  • Schlosser P, Stute M, Sonntag C, Münnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256

    Article  Google Scholar 

  • Schwarz GE, Alexander RB (1995) Soils data for the conterminous United States derived from the NRCS State Soil Geographic (STATSGO) Data Base. US Geol Surv Open-File Rep 95–449, Arc 7.0 coverage

  • Shapiro SD, Rowe GL, Schlosser P, Ludin A, Stute M (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour Res 34:1165–1180

    Article  Google Scholar 

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43:45–65

    Article  Google Scholar 

  • Snyder DT, Morgan DS, McGrath TS (1994) Estimation of groundwater recharge from precipitation, runoff into drywells, and on-site waste-disposal systems in the Portland Basin, Oregon and Washington. US Geol Surv Water Resour Invest Rep 92–4010, 34 pp

  • Solomon DK, Cook PG (2000) 3H and 3He. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston

    Google Scholar 

  • Solomon DK, Sudicky EA (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309–2319

    Article  Google Scholar 

  • Solomon DK, Poreda RJ, Cook PG, Hunt A (1995) Site characterization using 3 H/3He groundwater ages, Cape Cod, MA. Ground Water 33:988–996

    Article  Google Scholar 

  • Stackelberg PE, Kauffman LJ, Baehr AL, Ayers MA (2000) Comparison of nitrate, pesticides, and volatile organic compounds in samples from monitoring and public-supply wells, Kirkwood-Cohansey aquifer system, southern New Jersey. US Geol Surv Water Resour Invest Rep 2000–4123, 58 pp

  • Stanton JS, Fahlquist L (2006) Groundwater quality beneath irrigated cropland of the northern and southern High Plains aquifer, Nebraska and Texas, 2003–04. US Geol Surv Sci Invest Rep 2006–5196, 95 pp

  • Stanton JS, Qi SL (2007) Groundwater quality of the northern High Plains aquifer, 1997, 2002–04. US Geol Surv Sci Invest Rep 2006–5138, 60 pp

  • Steenhuis TS, Jackson CD, Kung SKJ, Brutsaert W (1985) Measurement of groundwater recharge on eastern Long Island. J Hydrol 79:145–169

    Article  Google Scholar 

  • Stotler R, Harvey FE, Gosselin DC (2010) A Black Hills-Madison aquifer origin for Dakota aquifer groundwater in northeastern Nebraska. Ground Water 48:448–464

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey Coastal Plain. Water Resour Res 32:1023–1038

    Article  Google Scholar 

  • Tamers CH (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239

    Article  Google Scholar 

  • Tesoriero AJ, Spruill TB, Mew HE, Farrell KM, Harden SL (2005) Nitrogen transport and transformations in a Coastal Plain watershed: influence of geomorphology on flow paths and residence times. Water Resour Res. doi:10.1029/2003WR002953

    Google Scholar 

  • Tesoriero AJ, Saad DA, Burow KR, Frick EA, Puckett LJ, Barbash JE (2007) Linking groundwater age and chemistry data along flow paths: implications for trends and transformations of nitrate and pesticides. J Cont Hydrol 94:139–155

    Article  Google Scholar 

  • Thatcher LL (1962) The distribution of tritium fallout in precipitation over North America. Bull Int Assoc Sci Hydrol 7:48–58

    Article  Google Scholar 

  • Thiros SA (2003) Quality and sources of shallow groundwater in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah. US Geol Surv Water Resour Invest Rep 03–4028, 74 pp

  • Thomas MA (2000) The effect of residential development on groundwater quality near Detroit, Michigan. J Am Water Resour Assoc 36:1023–1038

    Article  Google Scholar 

  • Tyler SW, Chapman JB, Conrad SH, Hammermeister D, Blout D, Miller J, Sully M, Ginanni J (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499

    Article  Google Scholar 

  • US Geological Survey (2009) Ground water atlas of the United States. http://pubs.usgs.gov/ha/ha730/. Cited 31 July 2009

  • Verhagen BT (1992) Detailed geohydrology with environmental isotopes: a case study at Serowe, Botswana. Isotope Techniques in Water Resources Development 1991, International Atomic Energy Agency, Vienna, pp 345–362

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology, International Atomic Energy Agency, Vienna, pp 355–368

  • Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40:4626–4632

    Article  Google Scholar 

  • Williamson AK, Prudic DE, Swain LA (1989) Groundwater flow in the Central Valley, California. US Geol Surv Prof Paper 1401–D, 127 pp

  • Wolock DM (2003) Estimated mean annual natural groundwater recharge in the conterminous United States. US Geol Surv Open-File Rep 03–311, digital dataset

  • Zongyu C, Zhenlong N, Zhaoji Z, Jixiang Q, Yunju N (2005) Isotopes and sustainability of ground water resources, North China Plain. Ground Water 43:485–493

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. K. Solomon and L. I. Wassenaar for sharing data and ancillary information with us. We would also like to thank the many US Geological Survey colleagues who shared data and local expertise on aquifer flow systems with us. K. Belitz, J. Denver, F. Leaney, T. Tokunaga, and two anonymous reviewers provided helpful comments on earlier versions of the manuscript. This work was funded by the following programs of the US Geological Survey: Groundwater Resources Program, National Water-Quality Assessment Program, and National Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. McMahon.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM

(PDF 3099 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, P.B., Plummer, L.N., Böhlke, J.K. et al. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol J 19, 779–800 (2011). https://doi.org/10.1007/s10040-011-0722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0722-5

Keywords

Navigation