Skip to main content
Log in

Significance of river–aquifer interactions for reach-scale thermal patterns and trout growth potential in the Motueka River, New Zealand

Importance des interactions entre les eaux de surface et les eaux souterraines pour les modèles thermiques au niveau de biefs et pour le potentiel de croissance des truites: exemple de la rivière de Motueka (Nouvelle Zélande)

Importancia de las interacciones acuífero-río en los patrones termales a escala de tramo y potencial para crecimiento de truchas en el Río Motueka, Nueva Zelanda

莫图依卡河含水层与河水相互作用对河段尺度热场分布与鳟鱼生长潜力的重要性

Importância das interacções rio-aquífero no padrão de distribuição de temperaturas à escala de troços de cursos de água e no crescimento de trutas no Rio Motueka, Nova Zelândia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To assess whether reaches of the Motueka River (New Zealand) that gain water from groundwater were likely to represent significant cold-water refugia for brown trout during periods of high water temperatures, water temperature was monitored for more than 18 months in two gaining reaches of the Motueka River and three reaches that were predicted to be losing water to groundwater. These data were used to predict brown trout (Salmo trutta) growth in gaining and losing reaches. Groundwater inputs had a small effect on water temperature at the reach-scale and modelling suggests that the differences observed were unlikely to result in appreciable differences in trout growth. Several coldwater patches were identified within the study reach that were up to 3.5°C cooler than the mainstem, but these were generally shallow and were unlikely to provide refuge for adult trout. The exception was Hinetai Spring, which had a mean water temperature of close to 16°C during the period January–March, when temperatures in the mainstem regularly exceeded 19°C. Trout were observed within the cold-water plume at the mouth of Hinetai Stream, which would allow them to thermoregulate when mainstem temperatures are unfavourable while still being able to capitalise on food resources available in the mainstem.

Résumé

Afin d’évaluer si les biefs de la rivière Motueka (Nouvelle Zélande) qui sont alimentés par les eaux souterraines, représentaient probablement des refuges d’eau froide pour les truites brunes pendant les périodes de température élevée, la température de l’eau a été mesurée au niveau de deux biefs alimentés par des eaux souterraines et de trois biefs où l’on pouvait supposer des infiltrations d’eaux de surface vers les eaux souterraines, sur une période de plus de 18 mois. Ces données ont été utilisées afin de prédire la croissance de la truite brune (Salmo trutta) au niveau de biefs alimentés ou non par des eaux souterraines. Les apports d’eaux souterraines ont un faible effet sur la température à l’échelle des biefs; les modèles suggèrent que les différences observées n’avaient peu de chance de permettre d’expliquer des différences appréciables concernant la croissance des truites. Différents schémas caractérisés par des températures froides ont été identifiés au niveau des biefs étudiés; la température pouvait être inférieure de 3.5°C par rapport à l’eau de la rivière, cependant ces températures plus fraîches concernaient généralement de faibles tranches d’eau, ne permettant par d’assurer des refuges pour des truites de taille adulte. L’exception concerne la source Hinetai émergeant dans le lit de la rivière; sa température moyenne était proche de 16°C pour la période de Janvier à Mars, alors que la température de la rivière était régulièrement supérieure à 19°C. Les truites ont été observées au niveau du panache d’eau froide de l’émergence de l’Hinetai; cet endroit permettait aux truites de réguler leur température, alors que les températures du cours d’eau n’y étaient pas favorables, tout en étant capable d’avoir recours aux nutriments disponibles dans le cours d’eau.

Resumen

Para evaluar si los tramos del Río Motueka (Nueva Zelanda) que ganan agua a partir del agua subterránea probablemente representan refugios significativos de agua fría para la trucha morena durante periodos con temperaturas de agua altas, se monitoreó la temperatura del agua durante más de 18 meses en dos tramos ganadores de agua del Río Motueka y en tres tramos que se pronosticaron como perdedores de agua hacia el agua subterránea. Estos datos se utilizaron para pronosticar el crecimiento de la trucha morena (Salmo trutta) en tramos ganadores y perdedores. Las entradas de agua subterránea tuvieron un efecto pequeño en la temperatura del agua a la escala de tramo y el modelado sugiere que era poco probable que las diferencias observadas resultaran en diferencias importantes en el crecimiento de la trucha. Se identificaron varias áreas con agua fría dentro del tramo estudiado las cuales alcanzaban temperaturas hasta 3.5 oC más frías que el río principal, aunque estas áreas eran generalmente someras y poco probables para aportar refugio a las truchas adultas. La excepción fue el Manantial Hinetai, el cual tuvo una temperatura promedio de agua cercana a 16 oC durante el periodo enero–marzo, cuando las temperaturas en el río principal con frecuencia excedieron 19 oC. Se observaron truchas dentro de la pluma de agua fría en la desembocadura del Río Hinetai, la cual permitiría que las truchas se auto regulen termalmente cuando las temperaturas del río principal no son favorables y las truchas todavía pueden capitalizar en los recursos alimentarios disponibles en el río principal.

摘要

为了评估新西兰莫图依卡河流域受地下水所补给的河段是否可以成为褐鳟鱼在河水高温季节的冷水避难所, 对莫图依卡河流域的两条潜水补给河和三条预测的漏失河的水温进行了大于18个月的监测。这些数据被用于潜水补给河和漏失河中预测褐鳟鱼 (Salmo trutta) 的生长。地下水输入对河段尺度上水温具微小影响, 模拟表明所观察到的差异不足以对鳟鱼的生长构成显著影响。在研究河段中还发现了可低于干流温度达3.5°C 的若干冷水团块, 但多位于浅部, 不太可能成为成年鳟鱼的避难所。 Hinetai泉是一个例外, 其在1-3月份的平均水温接近16°C, 而干流水温通常高于 19°C。在位于Hinetai 溪口的冷水晕中观察到了鳟鱼, 当干流水温不适宜时, 它们可以籍此维持体温, 且仍可从干流获得食物资源。

Resumo

De modo a verificar se troços efluentes do Rio Motueka representam refúgios de água fria significativos para trutas castanhas durante períodos de temperaturas altas, este parâmetro foi monitorizado durante mais de 18 meses em dois troços efluentes do rio e em três troços em que se considera que o rio é influente. Estes dados foram usados para estudar o crescimento de trutas castanhas (Salmo trutta) em troços influentes e efluentes. As transferências de água subterrânea têm pouca influência na temperatura da água à escala de troços dos cursos de água. Resultados de modelação mostram que as diferenças observadas não têm influência apreciável no crescimento das trutas. Foram identificadas várias manchas de água fria na área estudada com temperaturas até 3.5°C inferiores à temperatura do caudal principal do curso de água. No entanto, estas manchas eram em geral pouco profundas e insuficientes para permitir o refúgio de trutas adultas. Exceptua-se a nascente de Hinetai, a qual apresentou uma temperatura próxima de 16°C durante o período de Janeiro a Março, quando as temperaturas do caudal principal do curso de água excedem regularmente os 19°C. Foram observadas trutas no interior da pluma de água fria na desembocadura do Rio Hinetai, o que poderia permitir a sua termoregulação quando as temperaturas do caudal principal do curso de água são desfavoráveis, apesar de permitirem a continuação do aproveitamento dos recursos alimentares disponíveis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baird OE, Krueger CC (2003) Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack River, New York. Trans Am Fish Soc 132:1194–1206

    Article  Google Scholar 

  • Biro PA (1998) Staying cool: behavioral thermoregulation during summer by young-of-year brook trout in a lake. Trans Am Fish Soc 127:212–222

    Article  Google Scholar 

  • Boulton AJ, Hancock PJ (2006) Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust J Bot 54:1–12

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Brunke M, Hoehn E, Gonser T (2003) Patchiness of river-groundwater interactions within two floodplain landscapes and diversity of aquatic invertebrate communities. Ecosystems 6:7707–722

    Article  Google Scholar 

  • Crisp DT (1988) Prediction, from temperature, of eyeing, hatching and ‘swim-up’ times for salmonid embryos. Freshw Biol 19:41–48

    Article  Google Scholar 

  • Curry RA, Noakes DLG, Morgan GE (1995) Groundwater and the incubation and emergence of brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 52(8):1741–1749

    Article  Google Scholar 

  • Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130

    Article  Google Scholar 

  • Drake MT, Taylor WW (1996) Influence of spring and summer water temperature on brook charr, Salvelinus fontinalis, growth and age structure in the Ford River, Michigan. Environ Biol Fish 45:41–51

    Article  Google Scholar 

  • Duncan MJ (1992) Flow regimes of New Zealand rivers. In: Mosley MP (ed) Waters of New Zealand. New Zealand Hydrological Society, Wellington, pp 13–27

    Google Scholar 

  • Ebersole JL, Liss WJ, Frissell CA (2003) Cold water patches in warm streams: physicochemical characteristics and the influence of shading. J Am Water Resour Assoc 39:355–368

    Article  Google Scholar 

  • Elliott JM (1975) The growth rate of brown trout (Salmo trutta L.) fed on reduced rations. J Anim Ecol 44:823–842

    Article  Google Scholar 

  • Elliott JM (1981) Some aspects of thermal stress in teleosts. In: Pickering AD (ed) Stress and fish. Academic, London, pp 209–245

    Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, Oxford

    Google Scholar 

  • Elliott JM (2000) Pools as refugia for brown trout during two summer droughts: trout responses to thermal and oxygen stress. J Fish Biol 56:938-948

    Google Scholar 

  • Elliott JM, Elliott JA (1995) The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. J Fish Biol 47:917–919

    Article  Google Scholar 

  • Elliott JM, Hurley MA (1998) A new functional model for estimating the maximum amount of invertebrate food consumed per day by brown trout, Salmo trutta. Freshw Biol 39:339–349

    Article  Google Scholar 

  • Elliott JM, Hurley MA (1999) A new energetics model for brown trout, Salmo trutta. Freshw Biol 42:235–246

    Article  Google Scholar 

  • Elliott JM, Hurley MA (2000) Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshw Biol 44(2):237–245

    Article  Google Scholar 

  • Elliott JM, Hurley MA, Fryer RJ (1995) A new, improved growth model for brown trout, Salmo trutta. Funct Ecol 9:290–298

    Article  Google Scholar 

  • Garrett JW, Bennett DH (1995) Seasonal movements of adult brown trout relative to temperature in a coolwater reservoir. North Am J Fish Manage 15:480–487

    Article  Google Scholar 

  • Goniea TM, Keefer ML, Bjornn TC, Peery CA, Bennett DH, Stuehrenberg LC (2006) Behavioral thermoregulation and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Trans Am Fish Soc 135:408–419

    Article  Google Scholar 

  • Hagerthey SE, Kerfoot WC (2005) Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition. J N Am Benthol Soc 24:807–819

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Article  Google Scholar 

  • Hembre B, Arnekleiv JV, L’Abte-Lund JH (2001) Effects of water discharge and temperature on the seaward migration of anadromous brown trout, Salmo trutta, smolts. Ecol Freshw Fish 10:61–64

    Article  Google Scholar 

  • Hokanson KEF, Kleiner CF, Thorslund TW (1977) Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri. J Fish Res Board Can 34:639–648

    Google Scholar 

  • Hong T, Thomas J, Davie T (2005) River-aquifer interaction modelling in the Upper Motueka River catchment: three-dimensional finite-element groundwater flow model. Landcare ICM Report No. 2004–2005/03. Landcare Research, ICM, Nelson, New Zealnd, 50 pp

  • Jonsson N (1991) Influence of water flow, water temperature, and light on fish migration in rivers. Nordic J Freshw Res 66:20–35

    Google Scholar 

  • Jowett IG (1997) Environmental effects of extreme flows. In: MP Mosely, CP Pearson (eds) Floods and droughts: the New Zealand experience. New Zealand Hydrological Society, Caxton Press, Christchurch, New Zealand, pp 103-116

  • Kaeding LR (1996) Summer use of coolwater tributaries of a geothermally heated stream by rainbow and brown trout, Oncorhynchus mykiss and Salmo trutta. Am Midland Natur 135:283–292

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  Google Scholar 

  • Lucas MC, Baras E (2001) Migration of freshwater fishes. Blackwell, Oxford

    Google Scholar 

  • Meyers LS, Thuemler TF, Kornely GW (1992) Seasonal movement of brown trout in northeast Wisconsin. North Am J Fish Manage 12:433–441

    Article  Google Scholar 

  • Nielsen JL, Lisle TE, Ozark V (1994) Thermally stratified pools and their use by steelhead trout in northern Californian streams. Trans Am Fish Soc 123:613-626

    Google Scholar 

  • Ojanguren AF, Brana F (2003) Thermal dependence of embryonic growth and development in brown trout. J Fish Biol 62:580–590

    Article  Google Scholar 

  • Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manage 27:787-802

    Google Scholar 

  • Poole GC, Stanford JA, Running SW, Frissell CA (2006) Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. J N Am Benthol Soc 25:288–303

    Article  Google Scholar 

  • Sear DA, Armitage PD, Dawson FH (1999) Groundwater dominated rivers. Hydrol Process 13:255–276

    Article  Google Scholar 

  • Stewart MK, Hong TYS, Cameron SC, Daughney C, Tait T, Thomas JT (2005) Investigation of groundwater in the Upper Motueka River Catchment. IGNS science report 2003/32, Landcare Research, ICM, Nelson, New Zealand, 47 pp. http://icm.landcareresearch.co.nz/knowledgebase/publications/#2002. Cited 12 September 2008

  • Swanberg TR (1997) Movements and habitat use by fluvial bull trout in the Blackfood River, Montana. Trans Am Fish Soc 126:735–746

    Article  Google Scholar 

  • Torgersen CE, Price DM, Li HW, McIntosh BA (1999) Multiscale thermal refugia and stream habitat associations of chinook salmon in northeastern Oregon. Ecol Appl 9:301–319

    Article  Google Scholar 

  • Water Conservation (Motueka) Order (2004) Regulation (SR2004/258) issued under the authority of the Acts and Regulations Publication Act (1989). Notified in gazette on 25 August 2004, Ministry for the Environment, Wellington, New Zealand

  • Wondzell SM, Swanson FJ (1999) Floods, channel change, and the hyporheic zone. Water Resour Res 35:555–567

    Article  Google Scholar 

  • Young RG, Quarterman AJ, Eyles RF, Smith RA, Bowden WB (2005) Water quality and thermal regime of the Motueka River: influences of land cover, geology and position in the catchment. NZ J Mar Freshw Res 39:803–825

    Article  Google Scholar 

  • Youngson AF, Malcolm IA, Thorley JL, Bacon PJ, Soulsby C (2004) Long-residence groundwater effects on incubating salmonid eggs: low hyporheic oxygen impairs embryo development. Can J Fish Aquat Sci 61:2278–2287

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the New Zealand Foundation for Research, Science and Technology as part of the Integrated Catchment Management (ICM) Project (Contract No. C09X0305). We thank M. Doyle (Tasman District Council) for flow data for Motueka Catchment, G. Curnow and T. Kennedy for installing and retrieving the Hyatts groundwater temperature probe. AM and J Dempster provided access to some sites. T. Davie provided helpful information on the hydrogeology of the study reach and commented on the manuscript. J. Hayes provided invaluable advice and his constructive comments helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, D.A., Young, R.G. Significance of river–aquifer interactions for reach-scale thermal patterns and trout growth potential in the Motueka River, New Zealand. Hydrogeol J 17, 175–183 (2009). https://doi.org/10.1007/s10040-008-0364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0364-4

Keywords

Navigation