Skip to main content
Log in

Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50–100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area.

Résumé

Le transport et la transformation des nitrates ont été étudiés le long d’un transect long d’un kilomètre dans un verger d’amandiers le long de la Merced River, en Californie (Etats-Unis), en environnement irrigué. Les dosages des nitrates dans l’eau des pores et les modélisations utilisant le modèle RZWQM (root zone water quality model) ont montré que près de 63% de l’azote utilisé était transporté à travers les 6.5 m de la zone non saturée. Les temps de transit depuis les lieux de réalimentation jusqu’à la bordure d’une zone ripicole étaient compris entre 6 mois environ et plus de 100 ans. Ceci a permis une dénitrification partielle dans les horizons relativement réducteurs, et quasiment aucune dénitrification dans les horizons à conditions oxydantes. Les temps de transit de moins d’un an à plus de 6 ans à travers une zone ripicole de 50 à 100 m de large, en conditions plus réductrices, ont généré des taux de dénitrification plus élevés. Les dosages isotopiques et les concentrations de N2 en excès dans les eaux étaient indicatrices des taux de dénitrification les plus élevés à l’aval dans la Merced River. Le flux d’eau et de nitrates vers la rivière était dépendant des gradients générés par l’irrigation et du niveau de la rivière. Les résultats suggèrent que la capacité d’assimilation des nitrates du système aquifère, en particulier le lit de la rivière, limite la charge en nitrates de la Merced River sur le secteur d’étude.

Resumen

Se ha evaluado el transporte y la transformación de los nitratos a lo largo de un transecto de 1 km desde un huerto de almendros hasta el Río Merced, California, USA, dentro de una zona de agricultura de regadío. Como indican las medidas de nitratos en el agua intersticial y la modelización utilizando el Modelo de Calidad del Agua en la Zona de la Raíz, alrededor de un 63% del nitrógeno aplicado se transporta a través de 6.5 m de zona no saturada. El tiempo de transporte desde los lugares de recarga hasta el límite de la zona ribereña oscila entre aproximadamente 6 meses hasta más de 100 años. Esto permite que exista denitrificación parcial en horizontes que tienen condiciones ligeramente reductoras, y esencialmente no exista denitrificación en horizontes con condiciones oxidantes. Los tiempos de transporte a lo largo de una zona ribereña de entre 50 a 100 m de ancho, de entre menos de un año a más de seis años y condiciones más fuertemente reductoras dan lugar a mayores rangos de denitrificación. Los resultados isotópicos y las concentraciones del exceso de N2 en el agua fueron indicativos de denitrificación con los rangos más altos bajo el Río Merced. La descarga de agua y nitrato en el río dependieron de los gradientes producidos por el regadío o del estadio del río. Los resultados sugieren que la capacidad asimilativa del sistema de aguas subterráneas para el nitrato, y particularmente el lecho del río, está limitando la carga de nitrato al Río Merced en el área de estudio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahuja LR, Rojas KW, Hanson JD, Shaffer MJ, Ma L (1999) Root zone water quality model. Water Resources, Highlands Ranch, CO, USA

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

  • Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in groundwater: study of nitrate from a large-flux septic system plume. Groundwater 36:975–982

    Google Scholar 

  • Bottcher JO, Strebel S, Voerkelius S, Schmidt HL (1990) Using isotope fraction of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424

    Article  Google Scholar 

  • Burow KR, Stork SV, Dubrovsky NM (1998a) Nitrate and pesticides in groundwater in the eastern San Joaquin Valley, California: occurrence and trends. US Geol Surv Water Resour Invest Rep 98–4040, 33 pp

  • Burow KR, Shelton JL, Dubrovsky NM (1998b) Occurrence of nitrate and pesticides in groundwater beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993–1995. US Geol Surv Water Resour Invest Rep 97–4284, 51 pp

  • Burow KR, Shelton JL, Hevesi JA, Weissmann GS (2004) Hydrogeologic characterization of the Modesto area, San Joaquin Valley California. US Geol Surv Sci Invest Rep 2004–5232, 54 pp

  • Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrol Process 13:1451–1463

    Article  Google Scholar 

  • Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36(10):3011–3030

    Article  Google Scholar 

  • Busenberg E, Plummer LN, Bartholamay RC, Weyland JE (1998) Chloroflurocarbons, sulfur hexafluoride, and dissolved permanent gases in groundwater from selected sites in the Idaho National Engineering and Environmental Laboratory, Idaho, 1994–97. US Geol Surv Open-File Rep 98–274

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28:453–477

    Article  Google Scholar 

  • Casciotti KL, Sigman DA, Hastings AG, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912

    Article  Google Scholar 

  • Chappelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblevsky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–371

    Article  Google Scholar 

  • Coplen TB, Böhlke JK, Casciotti K (2004) Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O. Rapid Commun Mass Spectrom 18:245–250

    Article  Google Scholar 

  • DiCarlo DA, Bauters TWJ, Darnault CJG, Steenhuis TS, Parlange JY (1999) Lateral expansion of preferential flow paths in sands. Water Resour Res 35:427–434

    Article  Google Scholar 

  • Dubrovsky NM, Kratzer CR, Brown LR, Gronberg JM, Burow KR (1998) Water Quality in the San Joaquin-Tulare Basins, California, 1992–95. US Geol Surv Circ 1159, 38 pp

  • Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the Unites States. J Environ Qual

  • Fishman MJ (1993) Methods of analysis by the US Geological Survey National Water Quality Laboratory-Determination of inorganic and organic constituents in water and fluvial sediments. US Geol Surv Open-File Rep 93–125, 217 pp

  • Fishman MJ, Friedman LC (1989) Methods for determination of inorganic substances in water and fluvial sediments. Techniques of Water-Resources Investigations, book 5, chap. A1, US Geological Survey, Reston, VA, 545 pp

  • Green WH, Ampt CA (1911) Studies on soil physics, 1: flow of air and water through soils. J Agric Sci 4:1–24

    Article  Google Scholar 

  • Green CT, Fisher LH, Bekin BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual

  • Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Lauffman LJ, Denver JM, Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92, 121 pp

  • Haycock NE, Pinay G (1993) Nitrate retention in grass and popular vegetated riparian buffer strips during the winter. J Environ Qual 22:273–278

    Article  Google Scholar 

  • Healy RW, Ronan AD (1996) Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media-modification. US Geol Surv Water Resour Invest Rep 96–4230, 36 pp. Available online at http://pubs.er.usgs.gov/pubs/wri/wri964230. Cited 20 May 2007

  • Heaton THE, Vogel JC (1981) “Excess air” in groundwater. J Hydrol 50:201–216

    Article  Google Scholar 

  • Hiscock KM, Lloyd JW, Lerner DN (1991) Review of natural and artificial denitrification of groundwater. Water Res 25:1099–1111

    Article  Google Scholar 

  • Hsieh PA, Wingle W, Healy RW (2000) VS2DI: a graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. US Geol Surv Water Resour Invest Rep 99–4130, 16 pp

  • Karr JR, Schlosser IJ (1978) Water resources and land-water interface. Science 201:229–234

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    Google Scholar 

  • Lampe DC (2005) Agricultural chemicals: sources, transport, and fate. Agricultural Chemicals Team (ACT), National Water-Quality Assessment (NAWQA) Program’s Study Team. http://in.water.usgs.gov/NAWQA_ACT/index.shtml. Cited 25 October 2007

  • Lee EA, Strahan AP (2003) Methods of analysis of the US geological survey organic geochemistry research group-determination of acetamide herbicides and their degradation products in water using online solid-phase extraction and liquid chromatography/mass spectrometry. US Geol Surv Open-File Rep 03–173, 17 pp

  • Lowrance R, Todd R, Frail J Jr, Hendrickson O, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377

    Article  Google Scholar 

  • Lowrance R, Altier LS, Newbold JD, Schnabel RR, Groffman PM, Denver JM, Correll DL, Gilliam JW, Robinson JL, Brinsfield RB, Straver KW, Lucas WC, Todd AH (1995) Water quality functions of riparian forest buffer systems in the Chesapeake Bay Watersheds. US Environmental Protection Agency, Chesapeake Bay Program Report, EPA 903-R-95-004, USEPA, Annapolis, MD, USA

  • Lowrance R, Altier LS, Williams RG, Inamdar SP, Sheridan JM, Bosch DD, Hubbard RK, Thomas DL (2000) REMM: the riparian ecosystem management model. J Soil Water Conserv 55:27–34

    Google Scholar 

  • Manassaram DM, Backer LC, Moll DB (2006) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Environ Health Perspec 114:320–327

    Article  Google Scholar 

  • Mayer PM, Reynolds SK Jr, McCutchen MD, Canfield TJ (2007) Meta-analysis of nitrogen removal in riparian buffers. J Environ Qual 36:1172–1180

    Article  Google Scholar 

  • Mengis M, Schiff SL, Harris MC, English R, Aravena R, Elgood J, MacLean A (1999) Multiple geochemical and isotopic approaches for assessing groundwater NO3 elimination in a riparian zone. Groundwater 37:448–457

    Google Scholar 

  • Mueller DK, Hamilton PA, Helsel DR, Hitt KJ, Ruddy BC (1995) Nutrients in groundwater and surface waters of the united states-an analysis of data through 1992. US Geol Surv Water Resour Invest Rep 95–4031, 74 pp

  • Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annual Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (2005) California precipitation data accessed 14 November 2005. http://lwf.ncdc.noaa.gov/pub/data/coop-precip/california.txt. Cited 1 November 2006

  • Perkins JH (1997) Geopolitics and the green revolution: wheat, genes, and the cold war. Oxford University Press, New York

    Google Scholar 

  • Phillips SP, Green CT, Burow KR, Shelton JL, Rewis DL (2007) Simulation of multiscale ground-water flow in part of the northeastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2007–5009, 43 pp

  • Pollock DW (1994) Source code and ancillary data files for the MODPATH particle tracking package of the ground-water flow model MODFLOW; version 3, release 1. US Geol Surv Open-File Rep 94-0463, 6 pp, 2 diskettes

  • Puckett LJ (1995) Identifying the major sources of nutrient water pollution. Environ Sci Tech 29:408A–414A

    Article  Google Scholar 

  • Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292

    Article  Google Scholar 

  • Puckett LJ, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour Res 38. DOI 10.1029/2001WR000396

  • Puckett LJ, Zamora C, Essaid H, Wilson JT, Johnson HM, Brayton MJ, Vogel JR (2008) Transport and fate of nitrate at the ground-water/surface-water interface. J Environ Qual

  • Rawls WJ, Gimenez D, Grossman R (1982) Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Trans ASAE 41:983–988

    Google Scholar 

  • Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 32:1635–1642

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops: an energy combination theory. Quart J Roy Meteorol Soc 111:839–855

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani MC, Barford C, Galanter M, Böhlke JK (2001 A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • US Environmental Protection Agency (1993) Methods for the determination of inorganic substances in environmental samples, EPA/600/R-93/100, USEPA, Washington, DC, 172 pp

  • US Environmental Protection Agency (2003) Factoids: Drinking Water and Groundwater Statistics for 2002. EPA 816-K-03-001. USEPA, Washington, DC, pp 1–10

  • US Environmental Protection Agency (2006) Agricultural management practices for water quality protection, USEPA, Washington, DC, http://www.epa.gov/watertrain/agmodule/. Cited 26 April 2006

  • US Environmental Protection Agency (2007) Drinking Water Contaminants. USEPA, Washington, DC, http://www.epa.gov/safewater/contaminants/index.html. Cited 27 March 2007

  • Vogel JC, Talma AS, Heaton THE (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J Hydrol 50:191–200

    Article  Google Scholar 

  • Zamora C (2006) Estimating rates of exchange across the sediment/water interface in the lower Merced River, California. MSc Thesis, California State University, Sacramento, 110 pp

  • Zaugg SD, Sandstrom MW, Smith SG, Fehlberg KM (1995) Methods of analysis of the US geological survey national water quality laboratory-determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. US Geol Surv Open-File Rep 95–181, 49 pp

Download references

Acknowledgements

The authors would like to thank L. R. Ahuja, J. C. Ascough II, and L. Ma of the US Department of Agriculture/Agricultural Research Service/Northern Plains Area/Great Plains System Research Unit, Ft. Collins, Colo., and K. Rojas of the US Department of Agriculture/National Research Conservation Service/Information Technology Center, Ft. Collins, CO., and D. R. Wauchope, University of Georgia Coastal Plain/ US Department of Agriculture/Agricultural Research Service, Tifton, Georgia, for tireless assistance with the Root Zone Water Quality Model. The authors would also like to thank L. Kauffman, US Geological Survey (USGS), for his assistance in the groundwater modeling efforts. We also thank the landowners for access, permission to install wells and other equipment, and information regarding on-site agricultural practices. The authors would like to acknowledge USGS researchers J. Constantz and H. Essaid for their invaluable guidance with modeling efforts using the temperature model, VS2DH. The USGS National Water Quality Assessment (NAWQA) Program supported this work. Support for R. Wildman (graduate student, California Institute of Technology was provided by the National Science Foundation (NSF SGER grant EAR-0408329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Domagalski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domagalski, J.L., Phillips, S.P., Bayless, E.R. et al. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA. Hydrogeol J 16, 675–690 (2008). https://doi.org/10.1007/s10040-007-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0266-x

Keywords

Navigation