Skip to main content
Log in

Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We use a recently developed coupled fluid–particle discrete element model to study mixing of a wet granular material in a two dimensional setting. The particles are modeled as linearly elastic disks and are considered to be immersed in a Newtonian fluid. The fluid–particle interaction is modeled using a linear drag model under the assumption that the fluid inertia is small compared to particle inertia. The granular slurry is driven by a belt moving at constant velocity in a square cavity. In the simulations, we consider three types of size distributions: monodisperse, bidisperse with several particle size ratios, and polydisperse Gaussian distributions with several different standard deviations. Mixing is characterized using both strong and weak measures. Size segregation is observed only in the bidisperse simulations. The energy required for mixing polydisperse slurries decreases with increasing standard deviation of the particle sizes. Finally, we show the benefits of engineering certain polydisperse particle size distributions towards minimizing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benito, J.G., Vidales, A.M.: Novel aspects on the segregation in quasi 2D piles. Powder Technol. 234, 123–131 (2013)

    Article  Google Scholar 

  2. Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)

    Article  MATH  Google Scholar 

  3. Remy, B., Khinast, J.G., Glasser, B.J.: Polydisperse granular flows in a bladed mixer: experiments and simulations of cohesionless spheres. Chem. Eng. Sci. 66(9), 1811–1824 (2011)

    Article  Google Scholar 

  4. Chandratilleke, G.R., Yu, A.B., Bridgwater, J.: A DEM study of the mixing of particles induced by a flat blade. Chem. Eng. Sci. 79, 54–74 (2012)

    Article  Google Scholar 

  5. Dube, O., Alizadeh, E., Chaouki, J., Bertrand, F.: Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci. 101, 486–502 (2013)

    Article  Google Scholar 

  6. Devriendt, L., Gatumel, C., Berthiaux, H.: Experimental evidence of mixture segregation by particle size distribution. Part. Sci. Technol. 31(6), 653–657 (2013)

    Article  Google Scholar 

  7. Nguyen, D., Rasmuson, A., Björn, I.N., Thalberg, K.: CFD simulation of transient particle mixing in a high shear mixer. Powder Technol. 258, 324–330 (2014)

    Article  Google Scholar 

  8. Arntz, M.M.H.D., Beeftink, H.H., Otter, W.K., Briels, W.J., Boom, R.M.: Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE J. 60(1), 50–59 (2014)

    Article  Google Scholar 

  9. Collet, R., Oulahna, D., De Ryck, A., Jezequel, P.H., Martin, M.: Mixing of a wet granular medium: influence of the liquid addition method. Powder Technol. 208(2), 367–371 (2011)

    Article  Google Scholar 

  10. Kudrolli, A.: Granular matter: sticky sand. Nat. Mater. 7(3), 174–175 (2008)

    Article  ADS  Google Scholar 

  11. Hsiau, S.S., Liao, C.C., Tai, C.H., Wang, C.Y.: The dynamics of wet granular matter under a vertical vibration bed. Granul. Matter 15(4), 437–446 (2013)

    Article  Google Scholar 

  12. Samiei, K., Peters, B.: Experimental and numerical investigation into the residence time distribution of granular particles on forward and reverse acting grates. Chem. Eng. Sci. 87, 234–245 (2013)

    Article  Google Scholar 

  13. Liu, P.Y., Yang, R.Y., Yu, A.B.: Self-diffusion of wet particles in rotating drums. Phys. Fluids 25(6), 063301 (2013). (1994-present)

  14. Pereira, G.G., Cleary, P.W.: Radial segregation of multi-component granular media in a rotating tumbler. Granul. Matter 15(6), 705–724 (2013)

    Article  Google Scholar 

  15. Darelius, A., Remmelgas, J., Rasmuson, A., van Wachem, B., Björn, I.N.: Fluid dynamics simulation of the high shear mixing process. Chem. Eng. J. 164(23), 418–424 (2010). (Pharmaceutical Granulation and Processing)

    Article  Google Scholar 

  16. Liu, P.Y., Yang, R.Y., Yu, A.B.: Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23(1), 013304 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)

    Article  Google Scholar 

  18. Tsorng, S.J., Capart, H., Lo, D.C., Lai, J.S., Young, D.L.: Behaviour of macroscopic rigid spheres in lid-driven cavity flow. Int. J. Multiph. Flow 34(1), 76–101 (2008)

    Article  Google Scholar 

  19. Bonkinpillewar, P.D., Kulkarni, A., Panchagnula, M.V., Vedantam, S.: A novel coupled fluid particle DEM for simulating dense granular slurry dynamics. Granul. Matter 17(4), 511–521 (2015)

    Article  Google Scholar 

  20. Rodríguez, D., Benito, J.G., Ippolito, I., Hulin, J.P., Vidales, A.M., Uñac, R.O.: Dynamical effects in the segregation of granular mixtures in quasi 2d piles. Powder Technol. 269, 101–109 (2015)

    Article  Google Scholar 

  21. Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1), 63–82 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Leonardi, A., Cabrera, M., Wittel, F.K., Kaitna, R., Mendoza, M., Wu, W., Herrmann, H.J.: Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92, 052204 (2015)

    Article  ADS  Google Scholar 

  23. Yin, H., Zhang, M., Liu, H.: Numerical simulation of three-dimensional unsteady granular flows in rotary kiln. Powder Technol. 253, 138–145 (2014)

    Article  Google Scholar 

  24. Juarez, G., Christov, I.C., Ottino, J.M., Lueptow, R.M.: Mixing by cutting and shuffling 3D granular flow in spherical tumblers. Chem. Eng. Sci. 73, 195–207 (2012)

    Article  Google Scholar 

  25. Jain, A., Metzger, M.J., Glasser, B.J.: Effect of particle size distribution on segregation in vibrated systems. Powder Technol. 237, 543–553 (2013)

    Article  Google Scholar 

  26. Qingqing, Y., Zhiman, S., Fei, C., Keizo, U.: Enhanced mobility of polydisperse granular flows in a small flume. Geoenviron. Disasters 2(1), 1–9 (2015)

    Article  Google Scholar 

  27. Jop, P.: Rheological properties of dense granular flows. C.R. Phys. 16(1), 62–72 (2015)

    Article  ADS  Google Scholar 

  28. Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul. Matter 2(3), 123–135 (2000)

    Article  Google Scholar 

  29. Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.: Finite pointset method for simulation of the liquid-liquid flow field in an extractor. Comput. Chem. Eng. 32(12), 2946–2957 (2008)

    Article  Google Scholar 

  30. Bonkinpillewar, P.D., Vedantam, S., Panchagnula, M.V.: Flow of wet granular material in a lid driven cavity. In: Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics. Massachusetts Institute of Technology, USA (2013)

  31. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)

  32. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  33. Doucet, J., Bertrand, F., Chaouki, J.: A measure of mixing from lagrangian tracking and its application to granular and fluid flow systems. Chem. Eng. Res. Des. 86(12), 1313–1321 (2008)

    Article  Google Scholar 

  34. Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176(1), 250 (1968)

    Article  ADS  Google Scholar 

  35. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)

    Article  ADS  Google Scholar 

  36. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  37. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The computational resources in the High Performance Cluster was provided by the Indian Institute of Technology Madras. The data in this study was not presented earlier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallab Sinha Mahapatra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 36054 KB)

Supplementary material 2 (mp4 25828 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, P.S., Mathew, S., Panchagnula, M.V. et al. Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure. Granular Matter 18, 30 (2016). https://doi.org/10.1007/s10035-016-0633-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0633-1

Keywords

Navigation