Skip to main content
Log in

A minimum principle for contact forces in random packings of elastic frictionless particles

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A minimum principle is developed with the aim of determining the contact forces in a random packing of hard frictionless particles. The principle is an extension of the minimum complementary energy principle to this particular non linear mechanical system. Under the assumptions that a convex complementary energy exists and that relative displacements between particles are small, it allows us to synthesize the generation mechanism of the force network from an energetic point of view and provides, besides the existing methods (e.g. Discrete Element Method), a new method to analyze the contact force distribution in discrete particle systems. Here the contact force network in a packing of identical elastic frictionless spheres with Hertz contacts is determined and it is shown that it is unique and independent both by the value of the applied load and by the value of elastic constants. Numerical examples confirm that the contact forces so determined are consistent with previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anikeenko, A.V., Medvedev, N.N., Aste, T.: Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 77, 031101 (2008)

    Article  ADS  Google Scholar 

  2. Ammi, M., Bideau, D., Troadec, J.P.: Geometrical structure of disordered packings of regular polygons; comparison with disc packings structures. J. Phys. D 20, 424–428 (1987)

    Article  ADS  Google Scholar 

  3. Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63, 011302 (2000)

    Article  ADS  Google Scholar 

  4. Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165–177 (1996)

    Article  Google Scholar 

  5. Bernal, J.D., Mason, J.: Packing of spheres: co-ordination of randomly packed spheres. Nature 188, 910–911 (1960)

    Article  ADS  Google Scholar 

  6. Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., Nagel, S.R.: Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E 63, 041304 (2001)

    Article  ADS  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  8. Coppersmith, S.N., Liu, C., Majumdar, S., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996)

    Article  ADS  Google Scholar 

  9. Desmond, K.W., Weeks, E.R.: Random close packing of disks and spheres in confined geometries. Phys. Rev. E 80, 051305 (2009)

    Article  ADS  Google Scholar 

  10. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed) Linear Theories of Elasticity and Thermoelasticity, pp. 1–295. Springer, Berlin (1973)

  11. Hicher, P.-Y., Chang, C.S.: A microstructural elastoplastic model for unsaturated granular materials. Int. J. Solids Struct. 44, 2304–2323 (2007)

    Article  MATH  Google Scholar 

  12. Howell, D., Behringer, R.P.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    Article  ADS  Google Scholar 

  13. Jodrey, W.S., Tory, E.M.: Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347–2351 (1985)

    Article  ADS  Google Scholar 

  14. Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Persistence of force networks in compressed granular meida. Phys. Rev. E 87, 042207 (2013)

    Article  ADS  Google Scholar 

  15. Liu, C., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995)

    Article  ADS  Google Scholar 

  16. Luding, S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55, 4720–4729 (1997)

    Article  ADS  Google Scholar 

  17. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  18. Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    Article  ADS  Google Scholar 

  19. Miller, B., O’Hern, C., Behringer, R.P.: Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77, 3110–3113 (1996)

    Article  ADS  Google Scholar 

  20. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57, 3164–3169 (1998)

    Article  ADS  Google Scholar 

  21. Nemat-Nasser, S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541–1563 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Nemat-Nasser, S., Zhang, J.H.: Constitutive relations for cohesionless frictional granular materials. Int. J. Plast. 18, 531–547 (2002)

    Article  MATH  Google Scholar 

  23. Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996)

  24. Saadatfar, M., Sheppard, A.P., Senden, T.J., Kabla, A.J.: Mapping forces in a 3D elastic assembly of grains. J. Mech. Phys. Solids 60, 55–66 (2012)

    Article  ADS  MATH  Google Scholar 

  25. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. Mac Graw Hill, New York (1951)

    MATH  Google Scholar 

  26. Trentadue, F.: A micromechanical model for a non-linear elastic granular material based on local equilibrium conditions. Int. J. Solids Struct. 38, 7319–7342 (2001)

    Article  MATH  Google Scholar 

  27. Trentadue, F.: An equilibrium based approach for the micromechanical modelling of a non linear elastic granular material. Mech. Mater. 36, 323–324 (2004)

    Article  Google Scholar 

  28. Trentadue, F.: A rigid-plastic micromechanical modeling of a random packing of frictional particles. Int. J. Solids Struct. 48, 2529–2535 (2011)

    Article  Google Scholar 

  29. Walsh, S.D.T., Tordesillas, A., Peters, J.F.: Development of micromechanical models for granular media—the projection problem. Granul. Matter 9, 337–352 (2007)

    Article  MATH  Google Scholar 

  30. Yang, Z.X., Yang, J., Wang, L.Z.: Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granul. Matter 15, 557–572 (2013)

    Article  Google Scholar 

  31. Zhou, J., Long, S., Wang, Q., Dinsmore, A.A.: Measurement of forces inside a three-dimensional pile of frictionless droplets. Science 312, 1631–1633 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Trentadue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, SH., Cheng, M. et al. A minimum principle for contact forces in random packings of elastic frictionless particles. Granular Matter 17, 475–482 (2015). https://doi.org/10.1007/s10035-015-0567-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0567-z

Keywords

Navigation