Skip to main content
Log in

Simulation of the macromechanical behavior of oxide nanopowders during compaction processes

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Two granular systems (I and II) corresponding to oxide nanopowders having different agglomeration tendency are simulated by the granular dynamics method. The particle size is 10 nm. The interaction of particles involves the elastic forces of repulsion, the tangential forces of “friction”, the dispersion forces of attraction, and in the case of II system the opportunity of creation/destruction of hard bonds of chemical nature. The processes of the uniaxial compaction, the biaxial (radial) one, the isotropic one, the compaction combined with shear deformation as well as the pure shear deformation are studied. The effect of the positive dilatancy is revealed in the processes of shear deformation. The yield surfaces of nanopowders are constructed in the space of stress tensor invariants, i.e., the hydrostatic pressure and the deviator intensity. It is revealed that the form of the yield surfaces is similar to an ellipse, which is shifted along the hydrostatic axis to compressive pressures. The associated flow rule is analyzed. The nonorthogonality of the deformation vectors to the yield surface is established in both systems modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siegel, R.W.: Nanostructured materials: mind over matter. Nanostruct. Mater. 4(1), 121–138 (1994)

    Article  Google Scholar 

  2. Ivanov, V.V., Khrustov, V.R., Paranin, S.N., Medvedev, A.I., Shtol’ts, A.K., Ivanova, O.F., Nozdrin, A.A.: Stabilized zirconia nanoceramics prepared by magnetic pulsed compaction of nanosized powders. Glass Phys. Chem. 31(4), 465–470 (2005)

    Article  Google Scholar 

  3. Ivanov, V.V., Kaygorodov, A.S., Khrustov, V.R., Paranin, S.N., Spirin, A.V.: Hard alumina-based ceramics fabricated by the use of magnetic pulsed compaction of composite nanopowders. Russ. Nanotechnol. 1(1–2), 201–207 (2006)

    Google Scholar 

  4. Khrustov, V.R., Ivanov, V.V., Kotov, Y.A., Kaygorodov, A.S., Ivanova, O.F.: Nanostructured composite ceramic materials in the ZrO\(_2\)-Al\(_2\)O\(_3\) system. Glass Phys. Chem. 33(4), 379–386 (2007)

    Article  Google Scholar 

  5. Kaygorodov, A.S., Ivanov, V.V., Khrustov, V.R., Kotov, Y.A., Medvedev, A.I., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Murzakaev, A.M.: Fabrication of Nd:Y\(_2\)O\(_3\) transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders. J. Eur. Ceram. Soc. 27, 1165–1169 (2007)

    Article  Google Scholar 

  6. Shtern, M.B., Serdyuk, G.G., Maksimenko, L.A., Truhan, Y.V., Shulyakov, Y.M.: Phenomenological Theories of Powder Pressing. Naukova Dumka, Kiev (1982). (in Russian)

    Google Scholar 

  7. Boltachev, G.S., Nagayev, K.A., Paranin, S.N., Spirin, A.V., Volkov, N.B.: Magnetic Pulsed Compaction of Nanosized Powders. Nova Science Publishers Inc, NY (2010)

    Google Scholar 

  8. Tsiok, O.B., Sidorov, V.A., Bredikhin, V.V., Khvostantsev, L.G., Troitskiy, V.N., Trusov, L.I.: Relaxation effects during the densification of ultrafine powders at high hydrostatic pressure. Phys. Rev. B 51, 12127–12132 (1995)

    Article  ADS  Google Scholar 

  9. Vassen, R., Kaiser, A., Forster, J., Buchkremer, H.P., Stover, D.: Densification of uitrafine SiC powders. J. Mater. Sci. 31, 3623–3637 (1996)

    Article  ADS  Google Scholar 

  10. Mishra, R.S., Lesher, C.E., Mukherjee, A.K.: Nanocrystalline alumina by high pressure sintering. Mater. Sci. Forum 225–227, 617–622 (1996)

    Article  Google Scholar 

  11. Zhao, M., Li, X., Wang, Z., Song, L., Xiao, L., Xu, B.: The effect of pressure on the specific surface area and density of nanocrystalline ceramic powders. Nanostruct. Mater. 1(5), 379–386 (1992)

    Article  Google Scholar 

  12. Martin, C.L., Bouvard, D.: Study of the cold compaction of composite powders by the discrete element method. Acta Mater. 51(2), 373–386 (2003)

    Article  Google Scholar 

  13. Khasanov, O.L., Dvilis, E.S., Sokolov, V.M.: Compressibility of the structural and functional ceramic nanopowders. J. Eur. Ceram. Soc. 27, 749–752 (2007)

    Article  Google Scholar 

  14. Cha, H.R.: Densification of the nanopowder by using ultrasonic vibration compaction. Rev. Adv. Mater. Sci. 28, 90–93 (2011)

    Google Scholar 

  15. Meyers, M.A., Benson, D.J., Olevsky, E.A.: Shock consolidation: microstructurally-based analysis and computational modelling. Acta Mater. 47(7), 2089–2108 (1999)

    Article  Google Scholar 

  16. Boltachev, G.S., Volkov, N.B., Ivanov, V.V., Kaygorodov, A.S.: Shock-wave compaction of the granular medium initiated by magnetically pulsed accelerated striker. Acta Mech. 204, 37–50 (2009)

    Article  MATH  Google Scholar 

  17. Ning, J.L., Jiang, D.M., Shim, K.B.: Preparation of textured zinc oxide ceramics by extrusion and spark plasma sintering. Adv. Appl. Ceram. 105(6), 265–269 (2006)

    Article  Google Scholar 

  18. Filonenko, V.P., Khvostantsev, L.G., Bagramov, R.K., Trusov, L.I., Novikov, V.I.: Compacting tungsten powders with varying particle size using hydrostatic pressure up to 5 GPa. Powder Metall. Met. Ceram. 31, 296–299 (1992)

    Google Scholar 

  19. Vassen, R., Stoever, D.: Compaction mechanisms of ultrafine SiC powders. Powder Technol. 72, 223–226 (1992)

    Article  Google Scholar 

  20. Saha, B.P., Kumar, V., Joshi, S.V., Balakrishnan, A., Martin, C.L.: Investigation of compaction behavior of alumina nano powder. Powder Technol. 224, 90–95 (2012)

    Article  Google Scholar 

  21. Balakrishnan, A., Pizette, P., Martin, C.L., Joshi, S.V., Saha, B.P.: Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 58, 802–812 (2010)

    Article  Google Scholar 

  22. Boltachev, G.S., Volkov, N.B.: Simulation of nanopowder compaction in terms of granular dynamics. Tech. Phys. 56, 919–930 (2011)

    Article  Google Scholar 

  23. Boltachev, G.S., Volkov, N.B., Kaygorodov, A.S., Loznukho, V.P.: The peculiarities of uniaxial quasistatic compaction of oxide nanopowders. Nanotechnol. Russ. 6, 639–646 (2011)

    Article  Google Scholar 

  24. Boltachev, G.S., Lukyashin, K.E., Shitov, V.A., Volkov, N.B.: Three-dimensional simulations of nanopowder compaction processes by granular dynamics method. Phys. Rev. E 88, 012209 (2013)

    Article  ADS  Google Scholar 

  25. Olevsky, E.A., Bokov, A.A., Boltachev, G.S., Volkov, N.B., Zayats, S.V., Ilyina, A.M., Nozdrin, A.A., Paranin, S.N.: Modeling and optimization of uniaxial magnetic pulse compaction of nanopowders. Acta Mech. 224(12), 3177–3195 (2013)

    Article  MATH  Google Scholar 

  26. Dobrov, S.V., Ivanov, V.V.: Simulation of pulsed magnetic molding of long powdered products. Tech. Phys. 49(4), 413–419 (2004)

    Article  Google Scholar 

  27. Cooper, A.R., Eaton, L.E.: Compaction behavior of several ceramic powders. J. Am. Ceram. Soc. 45(3), 97–101 (1962)

    Article  Google Scholar 

  28. Denny, P.J.: Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 127, 162–172 (2002)

    Article  Google Scholar 

  29. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    MATH  MathSciNet  Google Scholar 

  30. Schwedes, J.: Shearing behaviour of slightly compressed cohesive granular materials. Powder Technol. 11(1), 59–67 (1975)

    Article  Google Scholar 

  31. Maximenko, A.L., Olevsky, E.A., Shtern, M.B.: Plastic behavior of agglomerated powder. Comput. Mater. Sci. 43, 704–709 (2008)

    Article  Google Scholar 

  32. Nott, P.R.: Classical and cosserat plasticity and viscoplasticity models for slow granular flow. Acta Mech. 205, 151–160 (2009)

    Article  MATH  Google Scholar 

  33. Heyliger, P.R., McMeeking, R.M.: Cold plastic compaction of powders by a network model. J. Mech. Phys. Solids 49(9), 2031–2054 (2001)

    Article  ADS  MATH  Google Scholar 

  34. Pizette, P., Martin, C.L., Delette, G., Sornay, P., Sans, F.: Compaction of aggregated ceramic powders: from contact laws to fracture and yield surfaces. Powder Technol. 198, 240–250 (2010)

    Article  Google Scholar 

  35. Procopio, A.T., Zavaliangos, A.: Simulation of multi-axial compaction of granular media from loose to high relative densities. J. Mech. Phys. Solids 53(7), 1523–1551 (2005)

    Article  ADS  MATH  Google Scholar 

  36. Skorokhod, V.V.: Rheological Principles of Sintering Theory. Naukova Dumka, Kiev (1972). (in Russian)

    Google Scholar 

  37. Olevskii, E.A., Shtern, M.B.: Rheological foundations of powder consolidation processes and the “mean-square” concept. Powder Metall. Met. Ceram. 43, 355–363 (2004)

    Article  Google Scholar 

  38. Gryaznov, V.G., Kaprelov, A.M., Romanov, A.E.: Critical instability of dislocations in microcrystals. Pis’ma Zh. Tekh. Fiz. (Sov. Tech. Phys. Lett.) 15(2), 39–44 (1989)

    Google Scholar 

  39. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  40. Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Gilabert, F.A., Roux, J.N., Castellanos, A.: Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E 75, 011303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gilabert, F.A., Roux, J.N., Castellanos, A.: Computer simulation of model cohesive powders: plastic consolidation, structural changes, and elasticity under isotropic loads. Phys. Rev. E 78, 031305 (2008)

    Article  ADS  Google Scholar 

  43. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  44. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  45. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11, 221–236 (2009)

    Article  MATH  Google Scholar 

  46. Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11, 209–220 (2009)

    Article  MATH  Google Scholar 

  47. Yang, J., Wu, C.Y., Adams, M.: DEM analysis of particle adhesion during powder mixing for dry powder inhaler formulation development. Granul. Matter 15, 417–426 (2013)

    Article  Google Scholar 

  48. Boltachev, G.S., Volkov, N.B., Dobrov, S.V., Ivanov, V.V., Nozdrin, A.A., Paranin, S.N.: Simulation of radial pulsed magnetic compaction of a granulated medium in a quasi-static approximation. Tech. Phys. 52, 1306–1315 (2007)

    Article  Google Scholar 

  49. Paranin, S., Ivanov, V., Nikonov, A., Spirin, A., Khrustov, V., Ivin, S., Kaygorodov, A., Korolev, P.: Densification of nano-sized alumina powders under radial magnetic pulsed compaction. Adv. Sci. Technol. 45, 899–904 (2006)

    Article  Google Scholar 

  50. Reissner, E., Sagoci, H.F.: Forced torsional oscillations of an elastic half-space. I. J. Appl. Phys. 15, 652–654 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Lur’e, A.I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience Publishers, NY (1964)

    MATH  Google Scholar 

  52. Sun, W., Zeng, Q., Yu, A., Kendall, K.: Calculation of normal contact forces between silica nanospheres. Langmuir 29(25), 7825–7837 (2013)

    Article  Google Scholar 

  53. Bartels, G., Unger, T., Kadau, D., Wolf, D.E., Kertesz, J.: The effect of contact torques on porosity of cohesive powders. Granul. Matter 7, 139–143 (2005)

    Article  MATH  Google Scholar 

  54. Greenwood, J.A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc. R. Soc. A 259, 480–507 (1961)

    Article  ADS  Google Scholar 

  55. Brilliantov, N.V., Pöschel, T.: Rolling friction of a viscous sphere on a hard plane. Europhys. Lett. 42(5), 511–516 (1998)

  56. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  ADS  Google Scholar 

  57. Valverde, J.M., Castellanos, A.: Compaction of fine powders: from fluidized agglomerates to primary particles. Granul. Matter 9, 19–24 (2007)

    Article  Google Scholar 

  58. Boltachev, G.S., Volkov, N.B.: Compaction and elastic unloading of nanopowders under the granular dynamic method. Powder Metall. Met. Ceram. 51, 260–266 (2012)

    Article  Google Scholar 

  59. Povarennykh, A.S.: Mineral Hardness. Izdat. AN Ukrainian SSR, Kiev (1963). (in Russian)

    Google Scholar 

  60. Herrmann, H.J.: Granular matter. Physica A 313(1–2), 188–210 (2002)

    Article  ADS  MATH  Google Scholar 

  61. Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)

    Article  ADS  Google Scholar 

  62. Garagash, I.A., Nikolayevskii, V.N.: Non-associated rules of flow and plastic deformation localization. Usp. Mekh. 12, 131–183 (1989)

    Google Scholar 

  63. Holcomb, D.J., Rudnicki, J.W.: Inelastic constitutive properties and shear localization in tennessee marble. Int. J. Numer. Anal. Methods Geomech. 25, 109–129 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The reported study was fulfilled within State programme (No. 0389-2014-0006, 2015–2017 years) and was partially supported by RFBR, research project No. 14-08-90404 Ukr_a and NASU (project No. 25-08-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grey Sh. Boltachev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltachev, G.S., Volkov, N.B., Kochurin, E.A. et al. Simulation of the macromechanical behavior of oxide nanopowders during compaction processes. Granular Matter 17, 345–358 (2015). https://doi.org/10.1007/s10035-015-0561-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0561-5

Keywords

Navigation