Skip to main content
Log in

Grain crushing and high-pressure oedometer tests simulated with the discrete element method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The present paper investigates the influence of microstructural inhomogeneities of brittle grains on grain crushing in cohesionless, frictional granular materials, using the discrete element method. Macrograins are modelled as assemblies of bonded micrograins of different sizes and bond strengths to simulate crushed sandstone. A method is suggested to incorporate fracture mechanical properties in the model through the selection of bond properties. Normal distribution of bond strengths, as well as degraded bonds are assumed to simulate bond defects. Their effects are first examined through single macrograin crushing tests. Then monotonic oedometer compression tests on macrograin ensembles are simulated for a wide range of pressures and different initial void ratios. The paper also explores the applicability of Bauer’s macroscopic compression law to the results of simulations of monotonic, oedometric compression tests. Correlations between the properties of individual macrograins, such as crushing strength and bonding defects, and the properties of the grain ensemble, such as granular hardness and grain size distribution are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F.L., Murata, H.: One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41(2), 39–51 (2001)

    Article  Google Scholar 

  2. Chuhan, F.A., Kjeldstad, A., Bjørlykke, K., Høeg, K.: Porosity loss in sand by grain crushing—experimental evidence and relevance to reservoir quality. Mar. Pet. Geol. 19, 39–53 (2002)

    Article  Google Scholar 

  3. Guimaraes, M.S., Valdes, J.R., Palomino, A.M., Santamarina, J.C.: Aggregate production: fines generation during rock crushing. Int. J. Miner. Process. 81, 237–247 (2007). doi:10.1016/j.minpro.2006.08.004

    Article  Google Scholar 

  4. Silvani, C., Bonelli, T., Désoyer, S.: Fracture of rigid solids: a discrete approach based on damaging interface modelling. Comptes Rendus Mécanique 335(8), 455–460 (2007). doi:10.1016/j.crme.2007.05.023

    Article  ADS  Google Scholar 

  5. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Géotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  6. Oldecop, L.A., Alonso, E.E.: Theoretical investigation of the time-dependent behaviour of rockfill. Géotechnique 57(3), 289–301 (2007)

    Article  Google Scholar 

  7. McDowell, G.R., Bolton, M.D., Robertson, D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44(12), 2079–2102 (1996)

    Article  ADS  Google Scholar 

  8. Gundepudi, M.K., Sankar, B.V., Mecholsky, J.J., Clupper, D.C.: Stress analysis of brittle spheres under multiaxial loading. Powder Technol. 94, 153–161 (1997)

    Article  Google Scholar 

  9. Chau, K.T., WeI, X.X., Wong, R.H.C., Yu, T.X.: Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses. Mech. Mater. 32, 543–554 (2000)

    Article  Google Scholar 

  10. Russell, A.R., Wood, D.M., Kikumoto, M.: Crushing of particles in idealised granular assemblies. J. Mech. Phys. Solids 57, 1293–1313 (2009). doi:10.1016/j.jmps.2009.04.009

    Article  ADS  MATH  Google Scholar 

  11. Russell, A.R., Wood, D.M.: Point load tests and strength measurements for brittle spheres. Int. J. Rock Mech. Min. Sci. 46, 272–280 (2009). doi:10.1016/j.ijrmms.2008.04.004

    Article  Google Scholar 

  12. McDowell, G.R., Daniell, C.M.: Fractal compression of soil. Géotechniqe 51(2), 173–176 (2001)

    Article  Google Scholar 

  13. Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., Murata, H.: Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found. 41(1), 69–82 (2001)

    Article  Google Scholar 

  14. Lőrincz, J., Imre, E., Gálos, M., Trang, P.Q., Rajkai, K., Fityus, S., Telekes, G.: Grading entropy variation due to soil crushing. Int. J. Geomech. 5(4), 311–319 (2005). doi:10.1061/(ASCE)1532-3641(2005)5:4(311)

    Article  Google Scholar 

  15. Lőrincz, J., Kárpáti, L., Trang, P.Q., Imre, E., Fityus, S.: Some comments on the grading entropy variation and crushing of various sands. In: Anagnostopoulos, A. et al. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnics of Hard Soils- Weak Rocks. Amsterdam: IOS Press, 2011, pp. 215–222. doi:10.3233/978-1-60750-801-4-215

  16. Marketos, G., Bolton, M.D.: Compaction bands simulated in discrete element models. J. Struct. Geol. 31, 479–490 (2009). doi:10.1016/j.jsg.2009.03.002

    Article  ADS  Google Scholar 

  17. McDowell, G.R., de Bono, J.P.: On the micro mechanics of one-dimensional normal compression. Géotechniqe 63(11), 1–14 (2013)

    Google Scholar 

  18. Lobo-Guerrero, S., Vallejo, L.E., Vesga, L.F.: Visualization of crushing evolution in granular materials under compression using DEM. Int. J. Geomech. 6(3), 195–200 (2006). doi:10.1061/(ASCE)1532-3641(2006)6:3(195)

    Article  Google Scholar 

  19. Lobo-Guerrero, S., Vallejo, L.E.: Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granul. Matter 8, 195–204 (2006). doi:10.1007/s10035-006-0006-2

    Article  Google Scholar 

  20. Whittles, D.N., Kingman, S., Lowndes, I., Jackson, K.: Laboratory and numerical investigation into the characteristics of rock fragmentation. Miner. Eng. 19, 1418–1429 (2006). doi:10.1016/j.mineng.2006.02.004

  21. Refahi, A., Aghazadeh Mohandesi, J., Rezai, B.: Discrete element modeling for predicting breakage behavior and fracture energy of a single particle in a jaw crusher. Int. J. Miner. Process. 94, 83–91 (2010). doi:10.1016/j.minpro.2009.12.002

  22. McDowell, G.R., Harireche, O.: Discrete element modelling of soil particle fracture. Géotechnique 52(2), 131–135 (2002)

    Article  Google Scholar 

  23. McDowell, G.R., Harireche, O.: Discrete element modelling of yielding and normal compression of sand. Géotechnique 52(4), 299–304 (2002)

  24. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  25. Cheng, Y.P., Bolton, M.D., Nakata, Y.: Crushing and plastic deformation of soils simulated using DEM. Géotechnique 54(2), 131–141 (2004)

    Article  Google Scholar 

  26. Liu, H.Y., Kou, S.Q., Lindqvist, P.-A.: Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing. Mech. Mater. 37, 935–954 (2005). doi:10.1016/j.mechmat.2004.10.002

    Article  Google Scholar 

  27. Kou, S.Q., Liu, H.Y., Lindqvist, P.-A., Tang, C.A., Xu, X.H.: Numerical investigation of particle breakage as applied to mechanical crushing—part II: interparticle breakage. Int. J. Rock Mech. Min. Sci. 38, 1163–1172 (2001)

    Article  Google Scholar 

  28. Bagherzadeh, KhA, Mirghasemi, A.A., Mohammadi, S.: Numerical simulation of particle breakage of angular particles using combined DEM and FEM. Powder Technol. 205, 15–29 (2011). doi:10.1016/j.powtec.2010.07.034

    Article  Google Scholar 

  29. de Bono, J.P., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter 16, 551–562 (2014). doi:10.1007/s10035-014-0500-x

    Article  Google Scholar 

  30. Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13–26 (1996)

    Article  Google Scholar 

  31. Itasca: PFC3D—Particle Flow Code in 3 Dimensions User’s Guide. 2003; Minneapolis, Minnesota, USA: Itasca Consulting Group Inc

  32. Nakata, Y., Hyde, A.F.L., Hyodo, M., Murata, H.: A probabilistic approach to sand particle crushing in triaxial tests. Géotechnique 49(5), 567–583 (1999)

    Article  Google Scholar 

  33. McDowell, G.R.: Statistics of soil particle strength. Géotechnique 51(10), 897–900 (2001)

    Article  Google Scholar 

  34. Jaeger, J.C.: Failure of rocks under tensile conditions. Int. J. Rock Mech. Min. Sci. 4, 219–227 (1967)

  35. Weibull, W.: A statistical distribution of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

  36. Duxbury, P.M., Kim, S.G., Leath, P.L.: Size effect and statistics of fracture in random materials. Mater. Sci. Eng. 176, 25–31 (1994)

    Article  Google Scholar 

  37. Kendall, K.: The impossibility of comminuting small particles by compression. Nature 272, 710–711 (1978)

    Article  ADS  Google Scholar 

  38. Uygar, E., Doven, A.G.: Monotonic and cyclic oedometer tests on sand at high stress levels. Granul. Matter 8, 19–26 (2006). doi:10.1007/s10035-005-0216-z

    Article  Google Scholar 

  39. von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  40. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frict. Mater. 2, 279–299 (1997)

    Article  Google Scholar 

  41. Oquendo, W.F., Muñoz, J.D., Lizcano, A.: Oedometric test, Bauer’s law and the micro-macro connection for a dry sand. Comput. Phys. Commun. 180, 616–620 (2009). doi:10.1016/j.cpc.2009.01.002

    Article  ADS  Google Scholar 

  42. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the TÉT 09-1-2010-0018 AT-11/09 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Laufer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laufer, I. Grain crushing and high-pressure oedometer tests simulated with the discrete element method. Granular Matter 17, 389–412 (2015). https://doi.org/10.1007/s10035-015-0559-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0559-z

Keywords

Navigation