Skip to main content
Log in

Dense granular flow at the critical state: maximum entropy and topological disorder

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

After extensive quasi-static shearing, dense dry granular flows attain a steady-state condition of porosity and deviatoric stress, even as particles are continually rearranged. The paper considers two-dimensional flow and derives the probability distributions of two topological measures of particle arrangement—coordination number and void valence—that maximize topological entropy. By only considering topological dispersion, the method closely predicts the distribution of void valences, as measured in discrete element (DEM) simulations. Distributions of coordination number are also derived by considering packings that are geometrically and kinetically consistent with the particle sizes and friction coefficient. A cross-entropy principle results in a distribution of coordination numbers that closely fits DEM simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schofield, A.N., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  2. Satake, M.: A discrete-mechanical approach to granular materials. Int. J. Eng. Sci. 30(10), 1525–1533 (1992)

    Article  Google Scholar 

  3. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  4. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  5. Peña, A.A., García-Rojo, R., Alonso-Marroquín, F., Herrmann, H.J.: Investigation of the critical state in soil mechanics using DEM. In: Nakagawa, M., Luding, S. (eds.) Powders and Grains 2009, pp. 185–188. Am. Inst. Phys. (2009)

  6. Kruyt, N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012)

    Article  Google Scholar 

  7. Weaire, D., Rivier, N.: Soap, cells and statistics—random patterns in two dimensions. Contemp. Phys. 25(1), 59–99 (1984). doi:10.1080/00107518408210979

    Article  ADS  Google Scholar 

  8. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben-Naim, A.: A farewell to entropy: statistical thermodynamics based on information. World Scientific, Hackensack, NJ (2008)

  10. Brown, C.B., Elms, D.G., Hanson, M.T., Nikzad, K., Worden, R.E.: Entropy and granular materials: experiments. J. Eng. Mech. 126(6), 605–610 (2000)

    Article  Google Scholar 

  11. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957). doi:10.1103/PhysRev.108.171

    Google Scholar 

  12. Shahinpoor, M.: Frequency distribution of voids in randomly packed monogranular layers. In: Jenkins, J., Satake, M. (eds.) Mechanics of Granular Materials: New Models and Constitutive Relations, pp. 173–186. Elsevier, Amsterdam (1983)

    Google Scholar 

  13. Brown, C.B.: Entropy and granular materials: model. J. Eng. Mech. 126(6), 599–604 (2000)

    Article  Google Scholar 

  14. Moroto, N.: The entropy of granular materials in shearing deformations. In: Jenkins, J., Satake, M. (eds.) Mechanics of Granular Materials: New Models and Constitutive Relations, pp. 187–194. Elsevier, Amsterdam (1983)

    Google Scholar 

  15. Edwards, S.F., Oakeshott, R.: Theory of powders. Phys. A 157(3), 1080–1090 (1989)

    Article  MathSciNet  Google Scholar 

  16. Kumar, V.S., Kumaran, V.: Voronoi cell volume distribution and configurational entropy of hard-spheres. J. Chem. Phys. 123, 114,501 (2005)

    Article  Google Scholar 

  17. Yoon, S.W., Giménez, D.: Entropy characterization of soil pore systems derived from soil-water retention curves. Soil Sci. 177(6), 361–368 (2012)

    Article  Google Scholar 

  18. Coppersmith, S.N., Liu, Ch., Majumdar, S., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53(5–A pt A), 4673–4685 (1996)

    Google Scholar 

  19. Edwards, S.F., Grinev, D.V.: Transmission of stress in granular materials as a problem of statistical mechanics. Phys. A Stat. Mech. Appl. 302(1–4), 162–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chakraborty, B.: Statistical ensemble approach to stress transmission in granular packings. Soft Matter 6(13), 2884–2893 (2010)

    Article  ADS  Google Scholar 

  21. Troadec, H., Radjai, F., Roux, S., Charmet, J.C.: Model for granular texture with steric exclusion. Phys. Rev. E 66, 041,305 (2002). doi:10.1103/PhysRevE.66.041305

    Article  Google Scholar 

  22. Rothenburg, L., Kruyt, N.P.: Micromechanical definition of an entropy for quasi-static deformation of granular materials. J. Mech. Phys. Solids 57(3), 634–655 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Book  Google Scholar 

  24. Kuhn, M.R., Chang, C.S.: Stability, bifurcation, and softening in discrete systems: a conceptual approach for granular materials. Int. J. Solids Struct. 43(20), 6026–6051 (2006)

    Article  MATH  Google Scholar 

  25. Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. iii. elastic properties. Phys. Rev. E 76, 061,304 (2007)

    Article  MathSciNet  Google Scholar 

  26. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021,309 (2005)

    Article  Google Scholar 

  27. Kruyt, N.P.: Micromechanics of the critical state of granular materials. In: Yang, Q., Zhang, J.M., Zheng, H., Yao, Y. (eds.) Constitutive Modeling of Geomaterials, pp. 193–198. Springer, Berlin (2013)

    Chapter  Google Scholar 

  28. Hunt, G.W., Tordesillas, A., Green, S.C., Shi, J.: Force-chain buckling in granular media: a structural mechanics perspective. Phil. Trans. R. Soc. A 368(1910), 249–262 (2010)

    Article  ADS  MATH  Google Scholar 

  29. Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274–277 (1996)

    Article  ADS  Google Scholar 

  30. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31(6), 407–429 (1999)

    Article  Google Scholar 

  31. Azéma, E., Radjaï, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76, 011,301 (2007)

    Article  Google Scholar 

  32. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  33. Hihinashvili, R., Blumenfeld, R.: Statistical-mechanical characteristics of dense planar granular systems. Granul. Matter 14(2), 277–282 (2012). doi:10.1007/s10035-012-0332-5

    Article  Google Scholar 

  34. Majmudar, T.S., Bhehringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(1079), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  35. Radjai, F., Delenne, J.Y., Azéma, E., Roux, S.: Fabric evolution and accessible geometrical states in granular materials. Granul. Matter 14(2), 259–264 (2012). doi:10.1007/s10035-012-0321-8

    Article  Google Scholar 

  36. Kuhn, M.R.: Micro-mechanics of fabric and failure in granular materials. Mech. Mater. 42(9), 827–840 (2010)

    Article  Google Scholar 

  37. Shaebani, M.R., Madadi, M., Luding, S., Wolf, D.E.: Influence of polydispersity on micromechanics of granular materials. Phys. Rev. E 85, 011,301 (2012). doi:10.1103/PhysRevE.85.011301

    Article  Google Scholar 

  38. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Academic Press Inc., San Diego (1992)

    Google Scholar 

  40. Been, K., Jefferies, M.G., Hachey, J.: The critical state of sands. Géotechnique 41(3), 365–381 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Prof. Colin B. Brown (1929–2013), who made significant contributions to the understanding of granular entropy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, M.R. Dense granular flow at the critical state: maximum entropy and topological disorder. Granular Matter 16, 499–508 (2014). https://doi.org/10.1007/s10035-014-0496-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0496-2

Keywords

Navigation