Skip to main content
Log in

Stick-slip behaviour of model granular materials in drained triaxial compression

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Drained triaxial axisymmetric compression tests are performed on water-saturated short cylindrical samples of nearly monodisperse glass beads, initially assembled in a loose state by a moist tamping technique. Both deviator stress \(q\) and volumetric strain \(\epsilon _v\), measured as functions of axial strain \(\epsilon _a\), for different strain rates, are affected by stick-slip events of very large amplitude, while the classical behavior of loose, contractant granular assemblies, approaching the critical state for large \(\epsilon _a\), corresponds to the upper envelop of the stress-strain behaviour. Those events consist in \((i)\) a very fast (slip) part in which a drop of \(q\) coincides with a jump of \(\epsilon _v\) (contraction), while loss of control of \(\epsilon _a\) and generation of pore pressure signal a dynamic collapse of the material structure triggered by an instability; and then \((ii)\) a quasi-static (stick) part in which the sample regains its strength and, over a short strain interval, behaves similarly to a denser system that dilates before reaching its critical state. A unique stress-dilatancy relation applies to all stick-slip events. Apparent internal friction angles and effects of strain rate and confining pressure are discussed, and it is argued that stick-slip instabilities originate in physico-chemical aging phenomena coupled to contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. http://www.Cvp-abrasif-broyage.com.

  2. On referring as precursors to small amplitude events, we do not imply that their frequency increases as a major event is about to take place. The observation of small events is merely suggestive of the possibility of large ones to occur in the same experimental conditions.

References

  1. Adjemian, F.: Stick-slip et transition de broutage dans les essais triaxiaux sur billes de verre. Thèse de doctorat, Ecole Centrale Paris (2003)

  2. Adjemian, F., Evesque, P.: Experimental study of stick-slip behaviour. Int. J. Numer. Anal. Meth. Geomech. 28(6), 501–530 (2004)

    Article  Google Scholar 

  3. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E 76(6), 061304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  4. Aharonov, E., Sparks, D.: Stick-slip motion in simulated granular layers. J. Geophys. Res. 109, B09306 (2004)

    Article  ADS  Google Scholar 

  5. Alshibli, K.A., Roussel, L.E.: Experimental investigation of stick-slip behaviour in granular materials. Int. J. Numer. Anal. Meth. Geomech. 30(14), 1391–1407 (2006)

    Article  Google Scholar 

  6. Anthony, J.L., Marone, C.: Influence of particle characteristics on granular friction. J. Geophys. Res. 110, B08409 (2005)

    Article  ADS  Google Scholar 

  7. Benahmed, N., Canou, J., Dupla, J.C.: Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes Rendus Mécanique 332(11), 887–894 (2004)

    ADS  MATH  Google Scholar 

  8. Berman, A.D., Ducker, W.A., Israelachvili, J.N.: Experimental and theoretical investigations of stick-slip friction mechanisms. In: Tosati, E., Persson, B. (eds.) Physics of Sliding Friction, pp. 51–67. Kluwer, Dordrecht (1996)

    Google Scholar 

  9. Biarez, J., Hicher, P.-Y.: Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils. Addison Wesley, Reading (1994)

    Google Scholar 

  10. Bjerrum, L., Krimgstad, S., Kummeneje, O.: The shear strength of a fine sand. In: Proceeding 5th international conference on soil mechanics and foundation engineering vol. 1, pp. 29–37 (1961)

  11. Çabalar, A.F., Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behaviour of a sand. Granul. Matter 12(1), 87–95 (2010)

    Article  Google Scholar 

  12. Cain, R., Page, N., Biggs, S.: Microscopic and macroscopic aspects of stick-slip motion in granular shear. Phys. Rev. E 64(1), (016413)1–8 (2001)

    Google Scholar 

  13. Chakrabarty, J.: Applied Plasticity. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Chevoir, F., Roux, J.-N., da Cruz, F., Rognon, P.G., Koval, G.: Friction law in dense granular flows. Powder Technol. 190, 264–268 (2009)

    Article  Google Scholar 

  15. Coste, C.: Shearing of a confined granular layer: tangential stress and dilatancy. Phys. Rev. E 70(5), 051302 (2004)

    Google Scholar 

  16. Daouadji, A., Darve, F., Al Gali, H., Hicher, P.Y., Laouafa, F., Lignon, S., Nicot, F., Nova, R., Pinheiro, M., Prunier, F., Sibille, L., Wan, R.: Diffuse failure in geomaterials: experiments, theory and modelling. Int. J. Numer. Anal. Methods Geomech. 35(16), 1731–1773 (2011)

  17. Dequeker, C.: Effets de la fabrication sur le comportement de sols modèles à l’appareil triaxial. Master de recherche, Institut National des Sciences Appliquées de Lyon (2008)

  18. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 527–546 (1996)

    Google Scholar 

  19. Di Benedetto, H., Tatsuoka, F., Ishihara, M.: Time-dependent shear deformation characteristics of sand and their constitutive modeling. Soils Found. 42(2), 1–22 (2002)

    Article  Google Scholar 

  20. Dieterich, J.H.: Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 84(B5), 2161–2168 (1979)

    Article  ADS  Google Scholar 

  21. Dieterich, J.H.: Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116(4), 790–806 (1978)

    Article  ADS  Google Scholar 

  22. Doanh, T., Ibraim, E.: Minimum undrained strength of Hostun RF. Geotechnique 50(4), 377–392 (2000)

    Article  Google Scholar 

  23. Doanh, T., Ibraim, E., Matiotti, R.: Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech. Cohesive-Frict. Mater. 2(1), 47–70 (1997)

    Article  Google Scholar 

  24. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78, 021301 (2008)

    Article  ADS  Google Scholar 

  25. Fazekas, S., Török, J., Kertesz, J., Wolf, D.E.: Morphologies of three-dimensional shear bands in granular media. Phys. Rev. E 74, 031303 (2006)

    Google Scholar 

  26. Géminard, J.C., Losert, W., Gollub, J.P.: Frictional mechanics of wet granular material. Phys. Rev. E 59(5), 5881–5890 (1999)

    Article  ADS  Google Scholar 

  27. Hatano, T.: Power-law friction in closely packed granular materials. Phys. Rev. E, 75:060301(R) (2007)

  28. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49(6), 4973–4988 (1994)

    Google Scholar 

  29. Hoang, M.T.: Frottement saccadé dans les matériaux granulaires modèles. Thèse de doctorat, Institut National des Sciences Appliquées de Lyon (2011)

  30. Ishihara, K.: Soil Behaviour in Earthquake Geotechnics. Oxford University Press, Oxford (1996)

    Google Scholar 

  31. Karner, S.L., Marone, C.: Effects of loading rate and normal stress on stress drop and stick-slip recurrence interval. Am. Geophys. Un., Geophys. Mono. 120, Geocomplexity and the Physics of Earthquakes, pp. 187–198 (2000)

  32. Kim, M.S.: Etude expérimentale du comportement mécanique des matériaux granulaires sous forte contrainte. Thèse de doctorat, Ecole Centrale Paris (1995)

  33. Ladd, R.S.: Preparing test specimens using undercompaction. Geotech. Test. J. 1(1), 16–23 (1978)

    Article  Google Scholar 

  34. Lemaître, A., Roux, J.-N., Chevoir, F.: What do dry granular flows tell us about dense non-brownian suspension rheology? Rheol. Acta. 48(8), 117 (2009)

    Article  Google Scholar 

  35. Luong, M.P.: Etat caractéristique du sol. Comptes Rendus de l’Académie des Sciences, series B, 287, 305–307 (1978)

    Google Scholar 

  36. Mair, K., Frye, K.M., Marone, C.: Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res. 107(B10), 2219 (2002)

    Article  ADS  Google Scholar 

  37. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998)

    Article  ADS  Google Scholar 

  38. Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior. Wiley, New York (2005)

    Google Scholar 

  39. Nasuno, S., Kudrolli, A., Bak, A., Gollub, J.P.: Time-resolved studies of stick-slip friction in sheared granular layers. Phys. Rev. E 58(2), 2161–2171 (1998)

    Article  ADS  Google Scholar 

  40. Nasuno, S., Kudrolli, A., Gollub, J.P.: Friction in granular layers: hysteresis and precursors. Phys. Rev. Lett. 79(5), 949–952 (1997)

    Article  ADS  Google Scholar 

  41. Oka, F., Kodaka, T., Kimoto, S., Ishigaki, S., Tsuji, C.: Step-changes strain rate effect on the stress-strain relations of clay and a constitutive modeling. Soils Found. 43(4), 189–203 (2003)

    Article  Google Scholar 

  42. O’Sullivan, C., Cui, L.: Micromechanics of granular material response during load reversals: combined DEM and experimental study. Powder Technol. 193(3), 289–302 (2009)

    Article  Google Scholar 

  43. Persson, B.N.J.: Sliding Friction. Springer, Berlin (1998)

    Google Scholar 

  44. Peyneau, P.-E., Roux, J.-N.: Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008)

    Article  ADS  Google Scholar 

  45. Peyneau, P.-E., Roux, J.-N.: Solidlike behavior and anisotropy in rigid frictionless bead assemblies. Phys. Rev. E 78, 041307 (2008)

    Article  ADS  Google Scholar 

  46. Radjaï, F., Roux, S.: Contact dynamics study of 2D granular media: critical states and relevant internal variables. In: Hinrichsen, H., Wolf, D.E. (eds.) The Physics of Granular Media, pp. 165–187. Wiley, Berlin (2004)

  47. Radjaï, F., Dubois, F. (eds.): Discrete Numerical Modeling of Granular Materials. Wiley, NY (2011)

  48. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41(2), 5763–5774 (2004)

    Google Scholar 

  49. Roussel, L.E.: Experimental investigation of stick-slip behaviour in granular materials. Louisiana State University, Master of science in civil engineering (2003)

  50. Ruina, A.: Slip instability and state variable friction law. J. Geophys. Res. 88(B12), 10359–10370 (1983)

    Article  ADS  Google Scholar 

  51. Schofield, A., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  52. Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. ASME J. Appl. Mech. 71, 350–358 (2004)

    Article  ADS  MATH  Google Scholar 

  53. Tatsuoka, F.: Impacts of geotechnical engineering of several recent findings from laboratory stress-strain tests on geomaterials. In: Correia, G., Brandle, H. (eds.) Geotechnics for Roads, Rail Tracks and Earth Structures, pp. 69–140. Balkema, Lisse (2001)

  54. Tatsuoka, F., Ishihara, K.: Yielding of sand in triaxial compression. Soils Found. 14(2), 63–76 (1974)

    Article  Google Scholar 

  55. Thompson, P., Grest, G.: Granular flow: friction and dilatancy transition. Phys. Rev. Lett. 67(13), 1751–1754 (1991)

    Article  ADS  Google Scholar 

  56. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  57. Wood, D.M.: General report: evaluation of material properties. In: Miura, S., Shibuya, S., Mitachi, T. (eds.) Proceedings Pre-failure Deformation of Geomaterials, Sapporo, Japan, vol. 2, pp. 1179–1199, Rotterdam: Balkema (1994)

Download references

Acknowledgments

Financial support of the second author provided by the French Ministry of Foreign and European Affairs through Eiffel excellence scholarship program is fully acknowledged. The authors would like to thank Dr. C. Dano of Ecole Centrale de Nantes, France for providing the SEM images of glass beads for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Doanh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doanh, T., Hoang, M.T., Roux, JN. et al. Stick-slip behaviour of model granular materials in drained triaxial compression. Granular Matter 15, 1–23 (2013). https://doi.org/10.1007/s10035-012-0384-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0384-6

Keywords

Navigation