Skip to main content
Log in

Asymptotic behaviour of granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The concept of the asymptotic behaviour of particulate materials is described, including its enhancement by considering asymptotic states in extension. A 3D discrete element model with elastic spherical particles and the granulometry of a real sand is set up. The numerical sample is stretched from different initial states, and the influence of the strain rate direction on the final state is studied within the stress ratio, void ratio and mean stress space. Asymptotic behaviour is clearly observed, although the grains remain intact (no grain crushing is considered). The extension asymptotic states were observed, and the notion of a normal extension line is introduced. The extension asymptotic states coincide with the peak states observed in the shear tests with constant stress path direction in dense samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Note that the isotropic asymptotic state is defined here by \(\psi _{\dot{\epsilon }}=0^\circ \); the corresponding asymptotic \(\psi _{\sigma }\) may then differ from \(0^\circ \) in the case of anisotropic structure.

  2. \(OCR\) is traditionally defined as \(OCR=p_c/p\), where \(p_c\) is the preconsolidation pressure. We prefer the definition (2), as no additional assumptions about the quasi-elastic soil behaviour are needed for its quantification.

References

  1. Alonso-Marroquín, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)

    Article  ADS  Google Scholar 

  2. Ben-Nun, O., Einav, I., Tordesillas, A.: Force attractor in confined comminution of granular materials. Phys. Rev. Lett. 104, 108,001–1/4 (2010)

    Google Scholar 

  3. Butterfield, R.: A natural compression law for soils. Géotechnique 29(4), 469–480 (1979)

    Article  Google Scholar 

  4. Casagrande, A.: Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng. 23(Jan), 257–276 (1936)

    Google Scholar 

  5. Chareyre, B., Villard, P.: Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems. J. Eng. Mech. 131(7), 689–698 (2005)

    Article  Google Scholar 

  6. Chen, F., Drumm, E.C., Guiochon, G.: Prediction/verification of particle motion in one dimension with discrete element method. J. Geotech. Geoenviron. Eng. ASCE 7(5), 344–352 (2007)

    Google Scholar 

  7. Cheng, Y.P., Bolton, M.D., Nakata, Y.: Crushing and plastic deformation of soils simulated using DEM. Géotechnique 54(2), 131–141 (2004)

    Article  Google Scholar 

  8. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  9. Chu, J., Lo, S.C.R.: Asymptotic behaviour of a granular soil in strain path testing. Géotechnique 44(1), 65–82 (1994)

    Article  Google Scholar 

  10. Cundall, P.A.: Distinct element model of rock and soil structure. In: Brown, E.T. (ed.) Analytical and Computational Methods in Engineering Rock Mechanics, pp. 129–163. Allen & Unwin, London (1987)

    Google Scholar 

  11. Cundall, P.A., Hart, D.H.: Numerical modelling of discontinua. Eng. Comput. 9, 101–113 (1992)

    Article  Google Scholar 

  12. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  13. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, Fmc: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  14. David, C.T., García-Rojo, R., Herrmann, H.J., Luding, S.: Hysteresis and creep in powders and grains. In: García-Rojo, H., McNamara, (eds.) Powders and Grains, pp. 291–294. Taylor and Francis, London (2005)

    Google Scholar 

  15. Donzé, F.V., Richefeu, V., Magnier, S.A.: Advances in discrete element method applied to soil, rock and concrete mechanics. In: State of the art of geotechnical engineering. Electronic Journal of Geotechnical Engineering, p. 44 (2009)

  16. Feda, J.: Notes on the effect of grain crushing on the granular soil behaviour. Eng. Geol. 63, 93–98 (2002)

    Article  Google Scholar 

  17. Ferellec, J.F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12, 459–467 (2010)

    Article  Google Scholar 

  18. GDR.MiDi: On dense granular flows. Eur. Phys. J. E: Soft Matter Biol. Phys. 14, 341 (2004)

    Google Scholar 

  19. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  20. Goldscheider, M.: True triaxial tests on dense sand. In: Gudehus, G. (ed.) Constitutive Relations for Soils, pp. 11–54. Balkema, Workshop Grenoble (1982)

    Google Scholar 

  21. Gudehus, G.: Attractors for granular storage and flow. In: 3rd European Symposium—Storage and Flow of Particulate Solids, Paper for the conference ‘Partec 95’, pp. 333–345 (1995)

  22. Gudehus, G.: Discussion of paper “Asymptotic behaviour of a granular soil in strain path testing” by Chu, J. and Lo, S.-C. R. Géotechnique 45(2), 337–338 (1995)

    Article  Google Scholar 

  23. Gudehus, G.: Physical Soil Mechanics. Springer, Berlin (2011)

    Book  Google Scholar 

  24. Gudehus, G., Mašín, D.: Graphical representation of constitutive equations. Géotechnique 59(2), 147–151 (2009)

    Article  Google Scholar 

  25. Gudehus, G., Goldscheider, M., Winter, H.: Mechanical properties of sand and clay and numerical intergration methods: some sources of errors and bounds of accuracy. In: Gudehus, G. (ed.) Finite Elements in Geomechanics, pp. 121–150. Wiley, Chichester (1977)

    Google Scholar 

  26. Hatano, T.: Constitutive law of dense granular matter. J. Phys.: Conf. Ser. 258(1), 012006 (2010)

    Article  ADS  Google Scholar 

  27. Hvorslev, M.J.: Über die Festigkeitseigenschaften gestörter bindiger Böden. Ph.D. thesis, Danmarks naturvidenskabelige samfund, Københaven (1937)

  28. ITASCA: The PFC2D user’s manual. ITASCA (2004). http://www.itascacg.com

  29. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  30. Kozicki, J., Tejchman, J.: Numerical simulations of sand behaviour using DEM with two different descriptions of grain roughness. In: Oñate, E., Owen, D.R.J. (eds.) II International Conference on Particle-based Methods–Fundamentals and Applications. Particles 2011 (2011)

  31. Kuhl, E., DAddetta, G., Leukart, M., Ramm, E.: Microplane modelling and particle modelling of cohesive-frictional materials. In: Vermeer, P., Herrmann, H., Luding, S., Ehlers, W., Diebels, S., Ramm, E. (eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, Lecture Notes in Physics, vol. 568, pp. 31–46. Springer, Berlin / Heidelberg (2001)

  32. Lätzel, M., Luding, S., Herrmann, H., Howell, D., Behringer, R.: Comparing simulation and experiment of a 2D granular couette shear device. Eur. Phys. J. E: Soft Matter Biol. Phys. 11, 325–333 (2003)

    Article  Google Scholar 

  33. Lu, N., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9, 69–80 (2007)

    Article  Google Scholar 

  34. Luding, S.: Collisions & contacts between two particles. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds.) Physics of Dry Granular Media–NATO ASI Series E350, p. 285. Kluwer, Dordrecht (1998)

    Google Scholar 

  35. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luding, S., Alonso-Marroquín, F.: The critical state yield stress (termination locus) of adhesive powders from a single numerical experiment. Granul. Matter 13, 109–119 (2011)

    Article  Google Scholar 

  37. Luo, T., Yao, Y., Chu, J.: Asymptotic state behaviour and its modeling for saturated sand. Sci. China Ser. E: Technol. Sci. 52, 2350–2358 (2009)

    Article  MATH  Google Scholar 

  38. Markauskas, D., Kašianauskas, R., Džiugys, A., Navakas, R.: Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul. Matter 12, 107–123 (2010)

    Article  Google Scholar 

  39. Mašín, D.: A hypoplastic constitutive model for clays. Int. J. Num. Anal. Methods Geomech. 29(4), 311–336 (2005)

    Article  MATH  Google Scholar 

  40. Mašín, D.: Hypoplastic Cam-clay model. Géotechnique 62(6), 549–553 (2012)

    Article  Google Scholar 

  41. Mašín, D., Herle, I.: State boundary surface of a hypoplastic model for clays. Comput. Geotech. 32(6), 400–410 (2005)

    Article  Google Scholar 

  42. Mašín, D., Herle, I.: Improvement of a hypoplastic model to predict clay behaviour under undrained conditions. Acta Geotech. 2(4), 261–268 (2007)

    Article  Google Scholar 

  43. McDowell, G.R., Bolton, M.D.: On micromechanics of crushable aggregates. Géotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  44. McDowell, G.R., Harireche, O.: Discrete element modelling of yielding and normal compression of sand. Géotechnique 52(4), 299–304 (2002)

    Article  Google Scholar 

  45. McDowell, G.R., Humpreys, A.: Yielding of granular materials. Granul. Matter 4, 1–8 (2002)

    Article  Google Scholar 

  46. Miehe, C., Dettmar, J.: A framework for micromacro transitions in periodic particle aggregates of granular materials. Comput. Methods Appl. Mech. Eng. 193, 225–256 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Otsuki, M., Hayakawa, H., Luding, S.: Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials. Progr. Theoret. Phys. Suppl. 184, 110–133 (2010)

    Article  ADS  MATH  Google Scholar 

  48. Peña, A.A., Herrmann, H.J., Lizcano, A., Alonso-Marroquín, F.: Investigation of the asymptotic states of granular materials using discrete element model of anisotropic particles. In: García-Rojo, H., McNamara, (eds.) Powders and Grains, pp. 697–700. Taylor and Francis, London (2005)

    Google Scholar 

  49. Peña, A.A., Lind, P.G., McNamara, S., Herrmann, H.J.: Geometrical derivation of frictional forces for granular media under slow shearing. Acta Mech. 205, 171–183 (2009)

    Article  MATH  Google Scholar 

  50. Pouliquen, O., Cassar, C., Forterre, Y., Jop, P., Nicolas, M.: How do grains flow: towards a simple rheology for dense granular flows. In: García-Rojo, H., McNamara, (eds.) Powders and Grains. Taylor and Francis, London (2005)

    Google Scholar 

  51. Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996)

    Article  ADS  Google Scholar 

  52. Roscoe, K.H., Burland, J.B.: On the generalised stress-strain behaviour of wet clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity, pp. 535–609. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  53. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behaviour: DEM simulations of triaxial tests. Granul. Matter 11, 221–236 (2009)

    Article  Google Scholar 

  54. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  55. Scholtés, L., Donzé, F.V., Khanal, M.: Scale effects on strength of geomaterials, case study: coal. J. Mech. Phys. Solids 59, 1131–1146 (2011)

    Article  ADS  Google Scholar 

  56. Sitharam, T.G., Vinod, J.S.: Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations. Granul. Matter 11, 33–42 (2009)

    Article  Google Scholar 

  57. Šmilauer, V., Catalano, E., Chareyre, B., Dorofenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránsk\(\grave{y}\), J., Thoeni, K.: Yade Documentation, 1st edn. The Yade Project (2010). http://yade-dem.org/doc/

  58. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter 13(4), 417–428 (2011)

    Google Scholar 

  59. Stránský, J., Jirásek, M.: Calibration of particle-based models using cells with periodic boundary conditions. In: Oñate, E., Owen, D.R.J. (eds.) II International Conference on Particle-based Methods–Fundamentals and Applications. Particles 2011 (2011)

  60. Tamagnini, C., Calvetti, F., Viggiani, G.: An assesment of plasticity theories for modelling the incrementally nonlinear behaviour of granular soils. J. Eng. Math. 52, 265–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948)

    Google Scholar 

  62. Topolnicki, M., Gudehus, G., Mazurkiewicz, B.K.: Observed stress-strain behaviour of remoulded saturated clays under plane strain conditions. Géotechnique 40(2), 155–187 (1990)

    Article  Google Scholar 

  63. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim, L., Butt, H.J.: Ultrafine cohesive powders: From interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62(11), 28432864 (2007)

    Google Scholar 

  64. von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes.-Frict. Mater. 1, 251 (1996)

    Article  Google Scholar 

  65. Walker, D.M., Tordesillas, A., Einav, I., Small, M.: Complex networks in confined comminution. Phys. Rev. E 84, 021301–1/9 (2011)

    Article  ADS  Google Scholar 

  66. Wang, J., Yu, H.S., Langston, P., Fraige, F.: Particle shape effects in discrete element modelling of cohesive angular particles. Granul. Matter 13, 1–12 (2011)

    Article  Google Scholar 

  67. Zhao, X., Evans, T.M.: Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granul. Matter 13, 751–764 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank to Prof. Gerd Gudehus for valuable discussions on the subject, to Dr. Václav Šmilauer for the introduction to the discrete element software Yade and to an anonymous journal reviewer for his valuable comments on the manuscript. Financial support by the research grants GACR P105/12/1705 and TACR TA01031840 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mašín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mašín, D. Asymptotic behaviour of granular materials. Granular Matter 14, 759–774 (2012). https://doi.org/10.1007/s10035-012-0372-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0372-x

Keywords

Navigation