Skip to main content
Log in

Genetic Haploinsufficiency as a Phenotypic Determinant of a Deletion 13q Syndrome

  • Published:
Pediatric and Developmental Pathology

Abstract

Two cases of newborns with deletion 13q syndrome were identified and studied using electron microscopy and histologic, immunohistochemical, and special stained sections. We reviewed the published literature on genes that are haploinsufficient in the deletion 13q syndrome. The complexity of the deletion 13q syndrome phenotype is due at least in part to the haploinsufficiency of dosage-sensitive genes. Future studies need to be performed to identify their precise role in the cellular function and the development of the deletion 13q syndrome phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brown S, Russo J, Chitayat D, Warburton D. The 13q− syndrome: the molecular definition of a critical region in band 13q32. Am J Hum Genet 1995;57:857–866

    Google Scholar 

  2. Allderdice PW, Davis JG, Miller OJ, et al. The 13q-deletion syndrome. Am J Hum Genet 1969;21:499–512

    PubMed  CAS  Google Scholar 

  3. Grace E, Drennan J, Colver D, Gordon RR. The 13q− deletion syndrome. J Med Genet 1971;8:351–357

    Article  PubMed  CAS  Google Scholar 

  4. Chemke J, Fishel E, Zalish M, Sagiv M. Multiple skeletal anomalies in the “13q−” syndrome. Eur J Pediatr 1978;128:27–31

    Article  PubMed  CAS  Google Scholar 

  5. Carnevale A, Frias S, Alcantar R. Interstitial deletion of long arm of chromosome 13. Ann Genet 1984;27:49–52

    PubMed  CAS  Google Scholar 

  6. Brown SA, Warburton D, Brown LY, et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998;20:180–183

    PubMed  CAS  Google Scholar 

  7. Nagai T, Aruga J, Takada S, et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 1997;182:299–313

    Article  PubMed  CAS  Google Scholar 

  8. Brown LY, Odent S, David V, et al. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 2001;10:791–796

    Article  PubMed  CAS  Google Scholar 

  9. Dalski A, Atici J, Kreuz FR, et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet 2005;13:118–120

    Article  PubMed  CAS  Google Scholar 

  10. Smallwood PM, Munoz-Sanjuan I, Tong P, et al. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci 1996;93:9850–9857

    Article  PubMed  CAS  Google Scholar 

  11. Wang Q, Bardgett ME, Wong M, et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron 2002;35:25–38

    Article  PubMed  CAS  Google Scholar 

  12. van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia. Am J Hum Genet 2003;72:191–199

    PubMed  Google Scholar 

  13. Malas S, Duthie S, Deloukas P, Episkopou V. The isolation and high-resolution chromosomal mapping of human SOX14 and SOX21; two members of the SOX gene family related to SOX1, SOX2, and SOX3. Mamm Genome 1999;10:934–937

    Article  PubMed  CAS  Google Scholar 

  14. Bylund M, Andersson E, Novitch BG, Muhr J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003;6:1162–1168

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy JF, Freeman MG, Benirschke K. Ovarian dysgenesis and chromosomal abnormalities. Obstet Gynecol 1977;50:13–20

    PubMed  CAS  Google Scholar 

  16. Cunniff C, Jones KL, Benirschke K. Ovarian dysgenesis in individuals with chromosomal abnormalities. Hum Genet 1991;86:552–556

    Article  PubMed  CAS  Google Scholar 

  17. Burks DJ, Font de Mora J, Schubert M, et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000;407:377–382

    PubMed  CAS  Google Scholar 

  18. Tobe K, Suzuki R, Aoyama M, et al. Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2 −/− mouse liver. J Biol Chem 2001;276:38337–38340

    Article  PubMed  CAS  Google Scholar 

  19. Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998;391:900–902

    PubMed  CAS  Google Scholar 

  20. Hennige AM, Burks DJ, Ozcan U, et al. Upregulation of insulin receptor substrate-2 in pancreatic beta-cells prevents diabetes. J. Clin. Invest 2003;112:1521–1532

    Article  PubMed  CAS  Google Scholar 

  21. Mammarella S, Romano F, Di Valerio A, et al. Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. Hum Mol Genet 2000;9:2517–2521

    Article  PubMed  CAS  Google Scholar 

  22. Poschl E, Pollner R, Kuhn K. The genes for the alpha-1(IV) and alpha-2(IV) chains of human basement membrane collagen type IV are arranged head-to-head and separated by a bidirectional promoter of unique structure. EMBO J 1988;7:2687–2695

    PubMed  CAS  Google Scholar 

  23. Soininen R, Huotari M, Hostikka SL, et al. The structural genes for alpha-1 and alpha-2 chains of human type IV collagen are divergently encoded on opposite DNA strands and have an overlapping promoter region. J Biol Chem 1988;263:17217–17220

    PubMed  CAS  Google Scholar 

  24. Tanaka N, Tajima S, Ishibashi A, et al. Expression of the alpha1-alpha6 collagen IV chains in the dermoepidermal junction during human foetal skin development: temporal and spatial expression of the alpha4 collagen IV chain in an early stage of development. Br J Dermatol 1998;139:371–374

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marilyn Jones, MD, of Children’s Hospital in San Diego for reviewing the manuscript and Henry Powell, MD, and Larry Hanson, MD, from the Department of Pathology, University of California of San Diego, University Medical Center for direct contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen G. Kasyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasyan, A.G., Benirschke, K. Genetic Haploinsufficiency as a Phenotypic Determinant of a Deletion 13q Syndrome. Pediatr Dev Pathol 8, 658–665 (2005). https://doi.org/10.1007/s10024-005-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10024-005-0066-z

Keywords

Navigation