Skip to main content

Advertisement

Log in

Reconstruction of Historic Forest Cover Changes Indicates Minor Effects on Carbon Stocks in Swiss Forest Soils

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Forest cover in Switzerland and other European countries has gradually increased in the past century. Our knowledge of the impacts of forest expansion and development on soil organic carbon (SOC) storage is, however, limited due to uncertainties in land-use history and lack of historical soil samples. We investigated the effect of forest age on current SOC storage in Switzerland. For 857 sites, we analysed SOC stocks and determined the minimal forest age for all presently forested sites using digitized historical maps, classifying all sites into three categories: young (≤60 years), medium (60–120 years), and old (≥120 years) forests. Grassland was the primary previous use of afforested land. Forest age affected current SOC stocks only moderately, whereas climate, soil chemistry, and tree species exerted a stronger impact. In the organic layer, highest SOC stocks were found in medium sites (3.0 ± 0.3 kg C m−2). As compared to other age categories, these sites had a 10% higher cover in coniferous forests with higher organic layer C stocks than broadleaf forests. SOC stocks in mineral soils decreased with increasing forest age (12.5 ± 0.9, 11.4 ± 0.5, 10.5 ± 0.3 kg C m−2). This decrease was primarily related to a 200-m higher average elevation of young sites and higher SOC stocks in a colder and more humid climate. In summary, forest age has only a minor effect on SOC storage in Swiss forest soils. Therefore, ongoing forest expansion in mountainous regions of Europe is unlikely contributing to soil C sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L. 2015. Forest soil carbon is threatened by intensive biomass harvesting. Nat Sci Rep 5:15991. doi:10.1038/srep15991.

    Article  Google Scholar 

  • Akademie der Wissenschaften Schweiz. 2016. Brennpunkt Klima Schweiz. Grundlagen, Folgen und Perspektiven. Swiss Acad Rep 11(5):34–45.

  • Angst M. 2012. Integration of Nature Protection in Swiss Forest Policy. INTEGRATE Country Report for Switzerland. Country report within the framework of the research project INTEGRATE (Integration of nature protection in forest management and its relation to other functions/services) of the Central European Office of the European Forest Institute (EFICENT), Freiburg I.B. [published online July 2012] Available from World Wide Web http://www.wsl.ch/publikationen/pdf/11873.pdf. Birmensdorf, Swiss Federal Research Institute for Forest, Snow and Landscape, WSL. 76 S.

  • Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD. 2014. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Change Biol 20:2393–405.

    Article  Google Scholar 

  • Bolliger J, Hagedorn F, Leifeld J, Böhl J, Zimmermann S, Soliva R, Kienast F. 2008. Effects of land-use change on carbon stocks in Switzerland. Ecosystems 11:895–907.

    Article  CAS  Google Scholar 

  • Böttcher J, Springob G. 2001. A carbon balance model for organic layers of acid forest soils. J Plant Nutr Soil Sci 164:399–405.

    Article  Google Scholar 

  • Braun-Blanquet J. 1964. Pflanzensoziologie Grundzüge der Vegetationskunde. 3rd edn. Berlin: Springer.

    Book  Google Scholar 

  • Brändli U-B (Red.). 2010. Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bern, Bundesamt für Umwelt, BAFU. 312 S.

  • Brändli U-B, Cioldi F, Fischer C, Huber M. 2015. Swiss National Forest Inventory—Special assessments for the Forest Report 2015 in the internet. WSL, Birmensdorf. Online: www.lfi.ch/publ/waldbericht/2015-en.php [17.8.15].

  • Ciais P, Sabine C, Bala G et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013 Physical Science Basis Contribution to Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465–570. doi:10.1017/CBO9781107415324.014

  • Crawley MJ. 2007. Regression. The R book. Hoboken: Wiley.

    Google Scholar 

  • Doblas-Miranda E, Rovira P, Brotons L, Martínez-Vilalta J, Retana J, Pla M, Vayreda J. 2013. Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain. Biogeosciences 10:8353–61. doi:10.5194/bg-10-8353-2013.

    Article  Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83(11):2978–84. doi:10.2307/3071833.

    Article  Google Scholar 

  • Eckmeier E, Egli M, Schmidt MWI, Schlumpf N, Nötzli M, Minikus-Stary N, Hagedorn F. 2010. Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma 159:147–55.

    Article  CAS  Google Scholar 

  • FOEN. 2012. Switzerland’s Greenhouse Gas Inventory 1990-2010. National Inventory Report 2012 including reporting elements under the Kyoto Protocol; Federal Office for the Environment Bern.

  • Fuchs R, Schulp CJE, Hengeveld GM, Verburg PH, Clevers JGPW, Schelhaas M-J, Herold M. 2016. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe. Glob Change Biol 22:2526–39. doi:10.1111/gcb.13191.

    Article  Google Scholar 

  • Gabarrón-Galeote MA, Trigalet S, van Wesemael B. 2015. Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma 249–250:69–78. doi:10.1016/j.geoderma.2015.03.007.

    Article  Google Scholar 

  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, Ed. Methods of soil analysis. Part 1. 2nd ed. Agronomy monograph 9. Madison, WI: ASA and SSSA. pp. 383–411.

  • Gellrich M, Baur P, Zimmermann NE. 2007. Natural forest regrowth as a proxy variable for agricultural land abandonment in the Swiss mountains: a spatial statistical model based on geophysical and socio-economic variables. Environ Model Assess J 12:269–78. doi:10.1007/s10666-006-9062-6.

    Article  Google Scholar 

  • Gimmi U, Poulter B, Wolf A, Portner H, Weber P, Bürgi M. 2013. Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking. Landsc Ecol 28:835–46.

    Article  Google Scholar 

  • Ginzler C, Brändli UB, Hägeli M. 2011. Waldflächenentwicklung der letzten 120 Jahre in der Schweiz. Schweiz Z Forstwes 162:337–43.

    Article  Google Scholar 

  • Gnägi C, Labhart T. (2015) Geologie der Schweiz, 9, vollständig überarbeitete Auflage, ott verlag, 208 Seiten. ISBN 978-3-7225-0142-0.

  • Gonseth Y, Wohlgemuth T, Sansonnens B, Buttler A. 2001. Die biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Bern: Bundesamt für Umwelt Wald und Landschaft.

    Google Scholar 

  • Guidi C, Vesterdal L, Gianelle D, Rodeghiero M. 2014. Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag 328:103–16.

    Article  Google Scholar 

  • Guillaume T, Damris M, Kuzyakov Y. 2015. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by α13C. Glob Change Biol 21:3548–60. doi:10.1111/gcb.12907.

    Article  Google Scholar 

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–60.

    Article  Google Scholar 

  • Gutman G et al., Eds. 2012. Land change science. Remote sensing and digital image processing, vol 6. doi:10.1007/978-1-4020-2562-4_14.

  • Hagedorn F, Moeri A, Walthert L, Zimmermann S. 2010. Kohlenstoff in Schweizer Waldböden—bei Klimaerwärmung eine potenzielle CO2—Quelle. Schweizerisch Zeitschrift für Forstwesen 161(12):530–5.

  • Harrell FE Jr, et al., with contributions from C. D. and many. 2015. Hmisc: Harrell Miscellaneous. R package version 3.16-0. http://cran.r-project.org/package=Hmisc.

  • Heiberger RM. 2015. HH: Statistical analysis and data display: Heiberger and Holland. R package version 3.1-21. at http://cran.r-project.org/package=HH.

  • Hiltbrunner D, Zimmermann S, Hagedorn F. 2013. Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–66.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. 2007. World Reference Base for Soil Resources 2006, first update 2007, World Soil Resources Reports No. 103, FAO, Rome.

  • Jandl R, Lindner M, Vesterdal L et al. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–68.

    Article  CAS  Google Scholar 

  • Janssens IA, Freibauer A, Ciais P et al. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300(5625):1538–42. doi:10.1126/science.1083592.

    Article  CAS  PubMed  Google Scholar 

  • Kümmerle T, Kaplan JO, Prishchepov AV, Rylsky I, Chaskovskyy O, Tikunov VS, Müller D. 2015. Forest transitions in Eastern Europe and their effects on carbon budgets. Glob Change Biol 21:3049–61. doi:10.1111/gcb.12897.

    Article  Google Scholar 

  • Lal R. 2005. Forest soils and carbon sequestration. For Ecol Manag 220:242–58.

    Article  Google Scholar 

  • Lemon J. 2006. Plotrix: a package in the red light district of R. R-News 6:8–12.

    Google Scholar 

  • Lettens S, Van Orshoven J, van Wesemael B, Perrin D, Roelandt C. 2004. The inventory-based approach for prediction of SOC change following land use change. Biotechnol, Agron, Soc Environ (BASE) 8(2):141–6.

    CAS  Google Scholar 

  • Liski J, Perruchoud D, Karjalainen T. 2002. Increasing carbon stocks in the forest soils of western Europe. For Ecol Manag 169(1–2):159–75.

    Article  Google Scholar 

  • Lorenz K, Lal R. 2010. Carbon sequestration in forest ecosystems. Berlin: Springer. doi:10.1007/978-90-481-3266-9_1

    Book  Google Scholar 

  • Mobley ML, Lajtha K, Kramer MG, Bacon AR. 2015. Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Change Biol 21:986–96. doi:10.1111/gcb.12715.

    Article  Google Scholar 

  • Motzkin J, Bellemare G, Foster DR. 2002. Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–20.

    Article  Google Scholar 

  • Neuwirth E. (2014) RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. http://cran.r-project.org/package=RColorBrewer.

  • Nussbaum M, Papritz A, Zimmermann S, Wathert S. 2016. Pedotransfer function to predict denisty of forest soils in Switzerland. J Plant Nutr Soil Sci 179:321–6. doi:10.1002/jpln.201500546.

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation or reforestation. For Ecol Manag 168:241–57.

    Article  Google Scholar 

  • Peltoniemi M, Mäkipää R, Liski J, Tamminen P. 2004. Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Glob Change Biol 10:2078–91. doi:10.1111/j.1365-2486.2004.00881.x.

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemaels B, Schumacher J, Gensior A. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Change Biol 17:2415–27.

    Article  Google Scholar 

  • Poeplau C, Don A. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08.003.

    Article  CAS  Google Scholar 

  • Prietzel J, Zimmermann L, Schubert A, Christophel D. 2016. Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming. Nat Geosci 9:543–8. doi:10.1038/NGEO2732.

    Article  CAS  Google Scholar 

  • Remund J, Rihm B, Huguenin-Landl B. 2014. Klimadaten für die Waldmodellierung für das 20. und 21. Jahrhundert Schlussbericht. Forschungsprogramm „Wald und Klimawandel“ des Bundesamtes für Umwelt BAFU, Bern und der Eidg. Forschungsanstalt WSL, Birmensdorf. Meteotest, Bern.

  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org/.

  • Ripley B. 2015. Tree: classification and regression trees. R package version 1.0-36. http://cran.r-project.org/package=tree.

  • Rounsevell MD, Annetts J, Audsley E, Mayr T, Reginster I. 2003. Modelling the spatial distribution of agricultural land use at the regional scale. Agr Ecosyst Environ 95:465–79.

    Article  Google Scholar 

  • Rounsevell MD, Reginster I, Araújo MB et al. 2006. A coherent set of future land use change scenarios for Europe. Agr Ecosyst Environ 114:57–68.

    Article  Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5(1):81–91. doi:10.4155/cmt.13.77.

    Article  CAS  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Jandl R. 2009. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob Change Biol 15(4):901–13. doi:10.1111/j.1365-2486.2008.01757.x.

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Schulp CJE, Verburg PH. 2009. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agr Ecosyst Environ 133:86–97.

    Article  Google Scholar 

  • Schwaab J, Bavay M, Davin E et al. 2015. Carbon storage versus albedo change: radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosci Discuss 11:10123–65.

    Article  Google Scholar 

  • Sjögersten S, Alewell C, Cécillon L et al. 2011. Mountain soils in a changing climate—vulnerability of carbon stocks and ecosystem feedbacks. Soil Carbon Sensit Eur Ecosyst From Sci Land Manag. doi:10.1002/9781119970255.ch6.

    Google Scholar 

  • Spielvogel S, Prietzel J, Kögel-Knabner I. 2006. Soil organic matter changes in a spruce ecosystem 25 years after disturbance. Soil Sci Soc Am J 70:2130–45. doi:10.2136/sssaj2005.0027.

    Article  CAS  Google Scholar 

  • Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, Wild B, Richter A, Wipf S, Siegwolf RTW. 2014. Soil warming alters microbial substrate use in alpine soils. Glob Change Biol 20(4):1327–38. doi:10.1111/gcb.12396.

    Article  Google Scholar 

  • Swisstopo. 2011. DEM, Swisstopo.

  • Thuille A, Schulze E-D. 2006. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol 12:325–42. doi:10.1111/j.1365-2486.2005.01078.x.

    Article  Google Scholar 

  • Thürig E, Kaufmann E. 2010. Increasing carbon sinks through forest management: a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps. Eur J For Res 129:563–72. doi:10.1007/s10342-010-0354-7.

    Article  Google Scholar 

  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. 4th edn. New York: Springer.

    Book  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P. 2002. Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169(1–2):137–47.

    Article  Google Scholar 

  • Vesterdal L, Leifeld J, Poeplau C, Don A, van Wesemael B. 2011. Land-use change effects on soil carbon stocks in temperate regions—development of carbon response functions. In: Jandl R, Rodeghiero M, Olsson M, Eds. Soil carbon in sensitive european ecosystems: from science to land management. Chichester: Wiley. doi:10.1002/9781119970255.ch3

    Google Scholar 

  • Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P. 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18. doi:10.1016/j.foreco.2013.01.017.

    Article  Google Scholar 

  • Walthert L, Graf U, Kammer A, Luster J, Pezzotta D, Zimmermann S, Hagedorn F. 2010. Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl. J Plant Nutr Soil Sci 173:207–16.

    Article  CAS  Google Scholar 

  • Walthert L, Graf Pannatier E, Meier ES. 2013. Shortage of nutrients and excess of toxic elements in soils limit the distribution of soil-sensitive tree species in temperate forests. For Ecol Manag 297:94–107.

    Article  Google Scholar 

  • Wickham H. 2007. Reshaping data with the reshape package. J Stat Softw 21:1–20.

    Article  Google Scholar 

  • Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

  • Wickham H. 2011. The Split-Apply-Combine Strategy for Data Analysis. J Stat Softw 40:1–29.

    Google Scholar 

  • Wickham H. 2015. tidyr: Easily Tidy Data with `spread()` and `gather()` Functions. R package version 0.3.1. http://cran.r-project.org/package=tidyr.

  • Wickham H. and Francois R. 2015. dplyr: a grammar of data manipulation. R package version 0.4.3. http://cran.r-project.org/package=dplyr.

  • Wiesmeier M, Spörlein P, Geuß U et al. 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Change Biol 18(7):1365–2486. doi:10.1111/j.1365-2486.2012.02699.x.

    Article  Google Scholar 

  • Wiesmeier M, Prietzel J, Barthold F et al. 2013. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—implications for carbon sequestration. For Ecol Manag 295:162–72.

    Article  Google Scholar 

  • Wiesmeier M, Barthold F, Spörlein P et al. 2014. Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Reg 1:67–78. doi:10.1016/j.geodrs.2014.09.001.

    Article  Google Scholar 

  • Wäldchen J, Schulze E-D, Schöning I, Schrumpf M, Sierra C. 2013. The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. For Ecol Manag 289:243–54.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Christin Loran for the help with outlining the Dufour map and Barbara Schneider for the support with the Siegfried tool. Evaluations were based on data from the Swiss Long-term Forest Ecosystem Research programme LWF (www.lwf.ch), which is part of the UNECE Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests ICP Forests (www.icp-forests.net). We are in particular grateful to Dr. Peter Waldner for the provision of the LWF data, to Oliver Schramm for the collection of the data, as well as, to Peter Jakob for the technical support database. Furthermore, we would like to thank Sonia Meller, Dr. Emily Solly, Dominik Brödlin, Martin Ley, Dr. Thomas Rime and Claude Herzog (WSL) for fruitful discussions, as well as, Beatriz González Domínguez, Dr. Mirjam Studer, Cédric Bader, and Tessa van der Voort for their input and synergy. This study (SNF 406840_143025) was funded by the Swiss National Fond (SNF) within the National Research Programme 68 (Sustainable Use of Soil as a Resource).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sia Gosheva.

Ethics declarations

Conflict of intereset

The authors declare no conflict of interest.

Additional information

Author contributions

SG performed the research, analysed the data, and co-wrote the paper; LW and SZ provided the data; PAN and UG contributed new methods to the data analysis; FH designed the study, analysed the data, and co-wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosheva, S., Walthert, L., Niklaus, P.A. et al. Reconstruction of Historic Forest Cover Changes Indicates Minor Effects on Carbon Stocks in Swiss Forest Soils. Ecosystems 20, 1512–1528 (2017). https://doi.org/10.1007/s10021-017-0129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0129-9

Keywords

Navigation