Skip to main content

Advertisement

Log in

When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m−2 day−1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m−2 day−1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m−2 day−1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Acuña V, Giorgi A, Muñoz I, Sabater F, Sabater S. 2007. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. J N Am Benthol Soc 26:54–69.

    Article  Google Scholar 

  • Acuña V, Datry T, Marshall J, Barceló D, Dahm CN, Ginebreda A, McGregor G, Sabater S, Tockner K, Palmer M. 2014. Why should we care about temporary waterways? Science 343:1080–2.

    Article  PubMed  Google Scholar 

  • Amalfitano S, Fazi S, Zoppini A, Caracciolo AB, Grenni P, Puddu A. 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean temporary rivers. Microb Ecol 55:270–9.

    Article  CAS  PubMed  Google Scholar 

  • Anesio AM, Theil-Nielsen J, Graneli W. 2000. Bacterial growth on photochemically transformed leachates from aquatic and terrestrial primary producers. Microb Ecol 40:200–8.

    CAS  PubMed  Google Scholar 

  • Angert A, Yakir D, Rodeghiero M, Preisler Y, Davidson EA, Weiner T. 2014. Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosci Discuss 11:12039–68.

    Article  Google Scholar 

  • Aristegi L, Izagirre O, Elosegi A. 2009. Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism. Hydrobiologia 635:113–24.

    Article  CAS  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.

    Article  PubMed  Google Scholar 

  • Austin AT, Vivanco L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–8.

    Article  CAS  PubMed  Google Scholar 

  • Bade DL. 2009. Gas exchange across the air-water interface. In: Gene EL, Ed. Encyclopedia of Inland waters. Oxford: Academic Press. p 70–78.

  • Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307.

    Article  Google Scholar 

  • Benstead JP, Leigh DS. 2012. An expanded role for river networks. Nat Geosci 5:678–9.

    Article  CAS  Google Scholar 

  • Birdwell JE, Engel AS. 2010. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–80.

    Article  CAS  Google Scholar 

  • Borken W, Matzner E. 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–24.

    Article  Google Scholar 

  • Boulton AJ. 1991. Eucalypt leaf decomposition in an intermittent stream in South-Eastern Australia. Hydrobiologia 211:123–36

  • Boulton AJ. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48:1173–85.

    Article  Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS. 1989. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53:800–5.

    Article  Google Scholar 

  • Buschiazzo DE, Estelrich HD, Aimar SB, Viglizzo E, Babinec FJ. 2004. Soil texture and tree coverage influence on organic matter. Rangel Ecol Manag 57:511–16.

    Article  Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran desert: implications for climate change. Ecosystems 11:961–79.

    Article  Google Scholar 

  • Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz M. 2009. Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–22.

    Article  CAS  Google Scholar 

  • Catalán N, von Schiller D, Marcé R, Koschorreck M, Gómez-Gener L, Obrador B. 2014. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33:349–60.

    Google Scholar 

  • Chapman LJ, Kramer DL. 1991. The consequences of flooding for the dispersal and fate of poeciliid fish in an intermittent tropical stream. Oecologia 87:299–306.

    Article  Google Scholar 

  • Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano TM. 2006. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 62:1583–90.

    Article  CAS  PubMed  Google Scholar 

  • Datry T, Larned ST, Tockner K. 2014. Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–35.

    Article  Google Scholar 

  • Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other method. J Sediment Petrol 44:242–8.

    CAS  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. 2001. Multi- and megavariate data analysis: principles and applications. Umea, Sweden: Umetrics AB.

    Google Scholar 

  • Fellman JB, Hood E, Spencer RGM. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–62.

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805.

    Article  CAS  Google Scholar 

  • Gallo EL, Lohse KA, Ferlin CM, Meixner T, Brooks PD. 2014. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121:189–207.

    Article  CAS  Google Scholar 

  • Gómez-Gener L, Obrador B, von Schiller D, Marcé R, Casas Ruiz JP, Proia L, Acuña V, Catalán N, Muñoz I, Koschorreck M. 2015. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 19:1–18.

    Google Scholar 

  • Grogan P, Jonasson S. 2005. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob Change Biol 11:465–75.

    Article  Google Scholar 

  • Hickin EJ. 1995. River geomorphology. Chichester: Wiley.

    Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P. 2012. On the increased frequency of Mediterranean drought. J Clim 25:2146–61.

    Article  Google Scholar 

  • Hornberger GM, Kelly MG. 1972. The determination of primary production in a stream using an exact solution to the oxygen balance equation. Water Resour Bull 8:795–801.

    Article  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–19.

    Article  CAS  Google Scholar 

  • Hunt RJ, Jardine TD, Hamilton SK, Bunn SE. 2012. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshw Biol 57:435–50.

    Article  CAS  Google Scholar 

  • Jacobson PJ, Jacobson KM, Angermeier PL, Cherry DS. 2000. Hydrologic influences on soil properties along ephemeral rivers in the Namib desert. J Arid Environ 45:21–34.

    Article  Google Scholar 

  • Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL. 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res: Biogeosci 113:1–15.

    Article  Google Scholar 

  • Kaiser M, Kleber M, Berhe AA. 2015. How air-drying and rewetting modify soil organic matter characteristics: an assessment to improve data interpretation and inference. Soil Biol Biochem 80:324–40.

    Article  CAS  Google Scholar 

  • Kothawala DN, Murphy KR, Stedmon CA, Weyhenmeyer GA, Tranvik LJ. 2013. Inner filter correction of dissolved organic matter fluorescence. Limnol Oceanogr: Methods 11:616–30.

    Article  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K. 2010. Emerging concepts in temporary-river ecology. Freshw Biol 55:717–38.

    Article  Google Scholar 

  • Lauerwald R, Laruelle GG, Hartmann J, Ciais P, Regnier G. 2015. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem Cycl 29:534–54.

    Article  CAS  Google Scholar 

  • Leigh C, Boulton AJ, Courtwright JL, Fritz K, May CL, Walker RH, Datry T. 2015. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology. doi:10.1111/fwb.12646.

  • Livingston GP, Hutchinson GL. 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC, Eds. Biogenic trace gases: measuring emissions from soil and water. Oxford: Blackwell Scientific Publications. p 14–51.

    Google Scholar 

  • Lowe WH, Likens GE, Power ME. 2006. Linking scales in stream ecology. Bioscience 56:591–7.

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.

    Article  CAS  Google Scholar 

  • Mcknight DM, Niyogi DK, Alger AS, Bomblies A, Peter A, Tate CM, Conovitz A, Mcknight DM, Niyogi DEVK, Bomblies A, Tate M. 2008. Valley streams Antarctica: ecosystems waiting for water. Bioscience 49:985–95.

    Article  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48.

    Article  CAS  Google Scholar 

  • McLean EO. 1982. Soil pH and lime requirement. In: Page AL, Ed. Methods of soil analysis, part 2: chemical and microbiological properties. Madison: American Society of Agronomy Inc. p 199–224.

    Google Scholar 

  • Mielnick PC, Dugas WA. 2000. Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32:221–8.

    Article  CAS  Google Scholar 

  • Millero F. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–77.

    Article  CAS  Google Scholar 

  • Naiman RJ, Decamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–58.

    Article  Google Scholar 

  • Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51.

    Article  Google Scholar 

  • Oksanen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. 2013. Vegan: community ecology package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan.

  • Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N. 2008. Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–9.

    Article  Google Scholar 

  • Paré MC, Bedard-Haughn A. 2013. Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic. Glob Change Biol 19:1126–40.

    Article  Google Scholar 

  • Pohlon E, Ochoa Fandino A, Marxsen J. 2013. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8:e83365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raich J, Potter C, Bhagawati D. 2002. Interannual variability in global soil respiration, 1980–94. Glob Chang Biol 8:800–12.

    Article  Google Scholar 

  • Raich J, Schlesinger W. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99.

    Article  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr: Fluids Environ 2:41–53.

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland water. Nature 503:355–9.

    Article  CAS  PubMed  Google Scholar 

  • Redeker KR, Baird AJ, Teh YA. 2015. Quantifying wind and pressure effects on trace gas fluxes across the soil–atmosphere interface. Biogeosci Discuss 12:4801–32.

    Article  Google Scholar 

  • Rey A. 2015. Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Change Biol 21:1752–61.

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20.

    Article  CAS  PubMed  Google Scholar 

  • Riley AJ, Dodds WK. 2013. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshw Sci 32:56–69.

    Article  Google Scholar 

  • Sheldon F, Bunn SE, Hughes JM, Arthington AH, Balcombe SR, Fellows CS. 2010. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar Freshw Res 61:885–95.

    Article  CAS  Google Scholar 

  • Stanley E, Fisher S, Grimm N. 1997. Ecosystem expansion and contraction in streams. Bioscience 47:427–35.

    Article  Google Scholar 

  • Steward AL, von Schiller D, Tockner K, Marshall JC, Bunn SE. 2012. When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–9.

    Article  Google Scholar 

  • Suleau M, Debacq A, Dehaes V, Aubinet M. 2009. Wind velocity perturbation of soil respiration measurements using closed dynamic chambers. Eur J Soil Sci 60:515–24.

    Article  Google Scholar 

  • Teodoru CR, Prairie YT, Del Giorgio PA. 2010. Spatial heterogeneity of surface CO2 fluxes in a newly created eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46.

    Article  Google Scholar 

  • Timoner X, Acuña V, von Schiller D, Sabater S. 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw Biol 57:1565–78.

    Article  CAS  Google Scholar 

  • von Schiller D, Marcé R, Obrador B, Gómez-Gener L, Casas-Ruiz JP, Acuña V, Koschorreck M. 2014. Carbon dioxide emissions from dry watercourses. Inland Water 4:377–82.

    Article  Google Scholar 

  • Vergnoux A, Di Rocco R, Domeizel M, Guiliano M, Doumenq P, Théraulaz F. 2011. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches. Geoderma 160:434–43.

    Article  CAS  Google Scholar 

  • Wagener SM, Oswood MW, Schimel JP. 1998. Rivers and soils: parallels in carbon and nutrient processing. Bioscience 48:104–8.

    Article  Google Scholar 

  • Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res: Oceans 97:7373–82.

    Article  Google Scholar 

  • Wehrli B. 2013. Conduits of the carbon cycle. Nature 503:9–10.

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. 2003. Evaluation of specific ultra-violet absorbance as an indicator of the chemical content of dissolved organic carbon. Environ Chem 41:843–5.

    Google Scholar 

  • Weiss R. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–15.

    Article  CAS  Google Scholar 

  • Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–30.

    Article  CAS  Google Scholar 

  • Zoppini A, Marxsen J. 2011. Importance of extracellular enzymes for biogeochemical processes in temporary river sediments during fluctuating dry-wet Conditions. In: Shukla G, Varma A, Eds. Soil enzymology. Berlin: Springer. p 103–17.

    Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50.

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness through the Projects CGL2011-30474-C02-01 and CGL2014-58760-C3-1-R. Ll. Gómez-Gener and J. P. Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and BES-2012-059655). N. Catalán hold a Wenner-Gren post-doctoral grant (Sweden). We thank Maria Caselles, Sílvia de Castro and Marina Gubau, for field and laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís Gómez-Gener.

Additional information

Author contributions

D.v.S., B.O., R.M., V.A., S.S., I.M. and L.G. conceived and designed the study. L.G., D.v.S. and V.A. conducted field work. L.G., N.C. and J.C. performed laboratory and data analyses. L.G. D.v.S. and B.O. wrote the paper with inputs from the rest of co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gener, L., Obrador, B., Marcé, R. et al. When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams. Ecosystems 19, 710–723 (2016). https://doi.org/10.1007/s10021-016-9963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-9963-4

Keywords

Navigation