Skip to main content

Advertisement

Log in

Quantifying Episodic Snowmelt Events in Arctic Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Rapid and extensive snowmelt occurred during 2 days in March 2013 at a low-Arctic study site in the ice-free part of southwest Greenland. Meteorology, snowmelt, and snow-property observations were used to identify the meteorological conditions associated with this episodic snowmelt event (ESE) occurring prior to the spring snowmelt season. In addition, outputs from the SnowModel snowpack-evolution tool were used to quantify the snow-related consequences of ESEs on ecosystem-relevant snow properties. We estimated a 50–80% meltwater loss of the pre-melt snowpack water content, a 40–100% loss of snow thermal resistance, and a 4-day earlier spring snowmelt snow-free date due to this March 2013 ESE. Furthermore, the accumulated meltwater loss from all ESEs in a hydrological year represented 25–52% of the annual precipitation and may potentially have advanced spring snowmelt by 6–12 days. Guided by the knowledge gained from the March 2013 ESE, we investigated the origin, past occurrences, frequency, and abundance of ESEs at spatial scales ranging from local (using 2008–2013 meteorological station data) to all of Greenland (using 1979–2013 atmospheric reanalysis data). The frequency of ESEs showed large interannual variation, and a maximum number of ESEs was found in southwest Greenland. The investigations suggested that ESEs are driven by foehn winds that are typical of coastal regions near the Greenland Ice Sheet margin. Therefore, ESEs are a common part of snow-cover dynamics in Greenland and, because of their substantial impact on ecosystem processes, they should be accounted for in snow-related ecosystem and climate-change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aastrup P, Raundrup K, Feilberg J, Krogh PK, Schmidt NM, Nabe-Nielsen J. 2014. Effects of large herbivores on biodiversity of vegetation and soil microarthropods in low Arctic Greenland—Akia, West Greenland and Southern Greenland. Scientific report from DCE—Danish Centre for Environment and Energy. Roskilde: Aarhus University, DCE—Danish Centre for Environment and Energy, p. 40.

  • AMAP. 2012. Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011 Overview report. Oslo: Arctic Monitoring and Assessment Programme (AMAP), p. xi + 97.

  • Auer AH. 1974. The rain versus snow threshold temperature. Weatherwise 27:67.

    Article  Google Scholar 

  • Austrheim G, Asheim L-J, Bjarnason G, Feilberg J, Fosaa AM, Holand Ø, Høegh K, Jónsdóttir IS, Magnússon B, Mortensen LE, Mysterud A, Olsen E, Skonhoft A, Steinheim G, Thórhallsdóttir AG. 2008. Sheep grazing in the North-Atlantic region—A long term perspective on management, resource economy and ecology. Rapport zoologisk serie 2008-3. Trondheim: Norges teknisk-naturvitenskapelige universitet Vitenskapsmuseet. p 86.

    Google Scholar 

  • Bartsch A, Kumpula T, Forbes BC, Stammler F. 2010. Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding. Ecol Appl 20:2346–58.

    Article  PubMed  Google Scholar 

  • Bay C, Aastrup P, Nymand J. 2008. The NERO line. A vegetation transect in Kobbefjord. West Greenland: National Environmental Research Institute, Aarhus University. p 40.

    Google Scholar 

  • Bayard D, Stähli M, Parriaux A, Flühler H. 2005. The influence of seasonally frozen soil on the snowmelt runoff at two Alpine sites in southern Switzerland. J Hydrol 309:66–84.

    Article  Google Scholar 

  • Benson CS, Sturm M. 1993. Structure and wind transport of seasonal snow on the Arctic slope of Alaska. Ann Glaciol 18:261–7.

    Google Scholar 

  • Blankinship JC, Meadows MW, Lucas RG, Hart SC. 2014. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour Res 50:1448–56.

    Article  Google Scholar 

  • Böcher TW, Fredskild B, Holmen K, Jakobsen K. 1978. Grønlands flora. Copenhagen: P. Haase & Søn.

    Google Scholar 

  • Bokhorst S, Bjerke JW, Davey MP, Taulavuori K, Taulavuori E, Laine K, Callaghan TV, Phoenix GK. 2010. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol Plant 140:128–40.

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK. 2011. Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Change Biol 17:2817–30.

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Tommervik H, Preece C, Phoenix GK. 2012. Ecosystem response to climatic change: the importance of the cold season. Ambio 41:246–55.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks PD, Grogan P, Templer PH, Groffman P, Oquist MG. 2011. Carbon and nitrogen cycling in snow-covered environments. Geogr Compass 5:682–99.

    Article  Google Scholar 

  • Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, Bradley RS, Blangy S, Bulygina ON, Christensen TR, Colman JE, Essery RLH, Forbes BC, Forchhammer MC, Golubev VN, Honrath RE, Juday GP, Meshcherskaya AV, Phoenix GK, Pomeroy J, Rautio A, Robinson DA, Schmidt NM, Serreze MC, Shevchenko VP, Shiklomanov AI, Shmakin AB, Skold P, Sturm M, Woo MK, Wood EF. 2011. Multiple effects of changes in arctic snow cover. Ambio 40:32–45.

    Article  PubMed Central  Google Scholar 

  • Cappelen J. 2011. DMI monthly climate data collection 1768-2010, Denmark, The Faroe Islands and Greenland technical report. Copenhagen: Danish Meteorological Institute. p 54.

    Google Scholar 

  • Cappelen J, Vinther BM. 2014. SW Greenland temperature data 1784-2013. Technical report. Copenhagen: Danish Meteorological Institute.

    Google Scholar 

  • Cappelen J, Vraae Jørgensen B, Vaarby Laursen E, Sligting Stannius L, Sjølin Thomsen R. 2001. The observed climate of Greenland, 1958-99—with climatological standard normals, 1961-90. Technical report. Copenhagen: Danish Meteorological Institute. p 151.

    Google Scholar 

  • Cooper EJ, Dullinger S, Semenchuk P. 2011. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci 180:157–67.

    Article  CAS  PubMed  Google Scholar 

  • Dadic R, Mott R, Lehning M, Carenzo M, Anderson B, Mackintosh A. 2013. Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv Water Resour 55:178–89.

    Article  Google Scholar 

  • DMI. 2014. Danish Meteorological Institute Weather archive: climate archive of climate normal period 1961–1990. Copenhagen: DMI.

    Google Scholar 

  • Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L. 2008. Soil and plant community-characteristics and dynamics at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M, Eds. Advances in ecological research. London: Academic Press. p 223–48.

    Google Scholar 

  • Ellebjerg SM, Tamstorf MP, Illeris L, Michelsen A, Hansen BU. 2008. Inter-annual variability and controls of plant phenology and productivity at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M, Eds. Advances in ecological research. London: Academic Press. p 249–73.

    Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland O, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA. 2012a. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–75.

    Article  PubMed  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Levesque E, Magnusson B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Porhallsdottir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM, Wipf S. 2012b. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–7.

    Article  Google Scholar 

  • Forchhammer M, Boertmann D. 1993. The Muskoxen Ovibos moschatus in north and northeast Greenland: population trends and the influence of abiotic parameters on population dynamics. Ecography 16:299–308.

    Article  Google Scholar 

  • Francis JA, Vavrus SJ. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801.

    Article  Google Scholar 

  • Fristrup B. 1953. De grønlandske foehnvinde. Tidsskriftet Grønland 3:4.

    Google Scholar 

  • Fuller MC, Geldsetzer T, Yackel JJ. 2009. Surface-based polarimetric C-band microwave scatterometer measurements of snow during a chinook event. IEEE Trans Geosci Remote Sens 47:1766–76.

    Article  Google Scholar 

  • Goodison BE, Louie PYT, Yang D. 1998. WMO solid precipitation intercomparison. Final report WMO/TD-872 Instruments and observing methods report. Geneva: World Meteorological Organization. p 212.

    Google Scholar 

  • Goodrich LE. 1982. The influence of snow cover on the ground thermal regime. Can Geotech J 19:421–32.

    Article  Google Scholar 

  • Gorter W, van Angelen JH, Lenaerts JTM, van den Broeke MR. 2014. Present and future near-surface wind climate of Greenland from high resolution regional climate modelling. Clim Dyn 42:1595–611.

    Article  Google Scholar 

  • Gouttevin I, Menegoz M, Domine F, Krinner G, Koven C, Ciais P, Tarnocai C, Boike J. 2012. How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J Geophys Res 117:G02020.

    Google Scholar 

  • Groisman PY, Karl TR, Knight RW, Stenchikov GL. 1994. Changes of snow cover, temperature, and radiative heat-balance over the Northern-Hemisphere. J Clim 7:1633–56.

    Article  Google Scholar 

  • Hanna E, Mernild SH, Cappelen J, Steffen K. 2012. Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ Res Lett 7:045404.

    Article  Google Scholar 

  • Hansen BB, Aanes R, Herfindal I, Kohler J, Saether BE. 2011. Climate, icing, and wild arctic reindeer: past relationships and future prospects. Ecology 92:1917–23.

    Article  PubMed  Google Scholar 

  • Hansen BB, Grotan V, Aanes R, Saether BE, Stien A, Fuglei E, Ims RA, Yoccoz NG, Pedersen AO. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science 339:313–15.

    Article  CAS  PubMed  Google Scholar 

  • Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen AO, Loe LE, Coulson SJ, Larsen JO, Varpe O. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett 9:114021.

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM. 2013. Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hoffmeyer N. 1877. The Greenland Foehn. Nature 16:296–7.

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC. 2007. Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–51.

    Article  PubMed  Google Scholar 

  • Iler AM, Høye TT, Inouye DW, Schmidt NM. 2013. Nonlinear flowering responses to climate: are species approaching their limits of phenological change? Philos Trans R Soc B 368:20120489.

    Article  Google Scholar 

  • Inouye DW. 2000. The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–63.

    Article  Google Scholar 

  • Jensen LM. 2012. Nuuk Ecological Research Operations, 5th annual report 2011. Roskilde: Aarhus University, DCE—Danish Centre for Environment and Energy. p 84.

    Google Scholar 

  • Jensen LM, Rasch M. 2008. Nuuk Ecological Research Operations, 1st annual report 2007. Roskilde: Danish Polar Centre, Danish Agency for Science, Technology and Innovation, Ministry of Science, Technology and Innovation. p 112.

    Google Scholar 

  • Jensen LM, Rasch M. 2009. Nuuk Ecological Research Operations, 2nd annual report 2008. Roskilde: National Environmental Research Institute, Aarhus University. p 80.

    Google Scholar 

  • Jensen LM, Rasch M. 2010. Nuuk Ecological Research Operations, 3rd annual report 2009. Roskilde: National Environmental Research Institute, Aarhus University. p 80.

    Google Scholar 

  • Jensen LM, Rasch M. 2011. Nuuk Ecological Research Operations, 4th annual report 2010. Roskilde: Aarhus University, DCE—Danish Centre for Environment and Energy. p 84.

    Google Scholar 

  • Jensen LM, Rasch M. 2013. Nuuk Ecological Research Operations, 6th annual report 2012. Roskilde: Aarhus University, DCE—Danish Centre for Environment and Energy. p 92.

    Google Scholar 

  • Johansson M, Callaghan TV, Bosio J, Akerman HJ, Jackowicz-Korczynski M, Christensen TR. 2013. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ Res Lett 8:035025.

    Article  Google Scholar 

  • Jones HG. 1999. The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13:2135–47.

    Article  Google Scholar 

  • Liston GE. 1995. Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J Appl Meteorol 34:1705–15.

    Article  Google Scholar 

  • Liston GE. 1999. Interrelationships among snow distribution, snowmelt, and snow cover depletion: implications for atmospheric, hydrologic, and ecologic modeling. J Appl Meteorol 38:1474–87.

    Article  Google Scholar 

  • Liston GE, Elder K. 2006a. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J Hydrometeorol 7:217–34.

    Article  Google Scholar 

  • Liston GE, Elder K. 2006b. A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7:1259–76.

    Article  Google Scholar 

  • Liston GE, Hall DK. 1995. An energy-balance model of lake-ice evolution. J Glaciol 41:373–82.

    Google Scholar 

  • Liston GE, Hiemstra CA. 2008. A simple data assimilation system for complex snow distributions (SnowAssim). J Hydrometeorol 9:989–1004.

    Article  Google Scholar 

  • Liston GE, Mernild SH. 2012. Greenland freshwater runoff. Part I: A runoff routing model for glaciated and Nonglaciated landscapes (HydroFlow). J Clim 25:5997–6014.

    Article  Google Scholar 

  • Liston GE, Sturm M. 1998. A snow-transport model for complex terrain. J Glaciol 44:498–516.

    Google Scholar 

  • Liston GE, Sturm M. 2002. Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J Hydrometeorol 3:646–59.

    Article  Google Scholar 

  • Liston GE, McFadden JP, Sturm M, Pielke RA. 2002. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Glob Change Biol 8:17–32.

    Article  Google Scholar 

  • Liston GE, Haehnel RB, Sturm M, Hiemstra CA, Berezovskaya S, Tabler RD. 2007. Instruments and methods simulating complex snow distributions in windy environments using SnowTran-3D. J Glaciol 53:241–56.

    Article  Google Scholar 

  • Lund M, Falk JM, Friborg T, Mbufong HN, Sigsgaard C, Soegaard H, Tamstorf MP. 2012. Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010. J Geophys Res 117:G02001.

    Google Scholar 

  • Marks D, Dozier J. 1992. Climate and energy exchange at the snow surface in the alpine region of the Sierra-Nevada. 2. Snow cover energy-balance. Water Resour Res 28:3043–54.

    Article  Google Scholar 

  • Meltofte H, Høye TT, Schmidt NM, Forchhammer MC. 2007. Differences in food abundance cause inter-annual variation in the breeding phenology of high Arctic waders. Polar Biol 30:601–6.

    Article  Google Scholar 

  • Mernild SH, Hanna E, Yde JC, Cappelen J, Malmros JK. 2014. Coastal Greenland air temperature extremes and trends 1890–2010: annual and monthly analysis. Int J Climatol 34:1472–87.

    Article  Google Scholar 

  • Nkemdirim LC. 1997. On the frequency and sequencing of chinook events. Phys Geogr 18:101–13.

    Google Scholar 

  • Nobrega S, Grogan P. 2007. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10:419–31.

    Article  CAS  Google Scholar 

  • Pattison RR, Welker JM. 2014. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska. Oecologia 174:339–50.

    Article  PubMed  Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–8.

    Article  CAS  PubMed  Google Scholar 

  • Reichle RH, Koster RD, De Lannoy GJM, Forman BA, Liu Q, Mahanama SPP, Touré A. 2011. Assessment and enhancement of MERRA land surface hydrology estimates. J Clim 24:6322–38.

    Article  Google Scholar 

  • Rennert KJ, Roe G, Putkonen J, Bitz CM. 2009. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. J Clim 22:2302–15.

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen JY, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–48.

    Article  Google Scholar 

  • Rumpf SB, Semenchuk PR, Dullinger S, Cooper EJ. 2014. Idiosyncratic responses of high arctic plants to changing snow regimes. PLoS ONE 9:E86281.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JA. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–27.

    Article  CAS  Google Scholar 

  • Schmidt NM, Kristensen DK, Michelsen A, Bay C. 2012. High Arctic plant community responses to a decade of ambient warming. Biodiversity 13:191–9.

    Article  Google Scholar 

  • Semenchuk PR, Elberling B, Cooper EJ. 2013. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol Evol 3:2586–99.

    Article  PubMed Central  PubMed  Google Scholar 

  • Semmens KA, Ramage J, Bartsch A, Liston GE. 2013. Early snowmelt events: detection, distribution, and significance in a major sub-arctic watershed. Environ Res Lett 8:014020.

    Article  Google Scholar 

  • Serreze MC, Box JE, Barry RG, Walsh JE. 1993. Characteristics of Arctic synoptic activity, 1952–1989. Meteorol Atmos Phys 51:147–64.

    Article  Google Scholar 

  • Steffen K, Box J. 2001. Surface climatology of the Greenland Ice Sheet: Greenland climate network 1995–1999. J Geophys Res 106:33951–64.

    Article  Google Scholar 

  • Sturm M, Johnson JB. 1992. Thermal-conductivity measurements of depth hoar. J Geophys Res Solid Earth 97:2129–39.

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE. 1995. A seasonal snow cover classification-system for local to global applications. J Clim 8:1261–83.

    Article  Google Scholar 

  • Sturm M, Holmgren J, Konig M, Morris K. 1997. The thermal conductivity of seasonal snow. J Glaciol 43:26–41.

    Google Scholar 

  • Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J. 2010. Estimating snow water equivalent using snow depth data and climate classes. J Hydrometeorol 11:1380–94.

    Article  Google Scholar 

  • Westergaard-Nielsen A, Lund M, Hansen BU, Tamstorf MP. 2013. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. ISPRS J Photogram Remote Sens 86:89–99.

    Article  Google Scholar 

  • Wilson RR, Bartsch A, Joly K, Reynolds JH, Orlando A, Loya WM. 2013. Frequency, timing, extent, and size of winter thaw-refreeze events in Alaska 2001-2008 detected by remotely sensed microwave backscatter data. Polar Biol 36:419–26.

    Article  Google Scholar 

  • Zhang T. 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Nuuk Ecological Research Operations and Asiaq, Greenland Survey for providing data and helping us with data collection in March 2013 in Kobbefjord; and NASA for permission to use Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis datasets. We offer our special thanks to K. Elder for thorough guidance and recommendations on snow-sampling methods and strategies used during the field campaign. We also thank two anonymous reviewers whose comments greatly improved this manuscript. We gratefully acknowledge the logistic support of Arctic Research Centre (ARC), Aarhus University. Support was also provided by the Canada Excellence Research Chair (CERC). This study was funded by the Environmental Protection Agency and the Danish Energy Agency, and it is a contribution to the Arctic Science Partnership (ASP) asp-net.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine Højlund Pedersen.

Additional information

Author contributions

Stine Højlund Pedersen: Designed the study, performed research, analyzed data, contributed with new methods, and wrote the paper. Glen E. Liston: contributed with new methods and models and wrote the paper. Mikkel P. Tamstorf: contributed with new methods and wrote the paper. Andreas Westergaard-Nielsen: wrote the paper. Niels Martin Schmidt: wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, S.H., Liston, G.E., Tamstorf, M.P. et al. Quantifying Episodic Snowmelt Events in Arctic Ecosystems. Ecosystems 18, 839–856 (2015). https://doi.org/10.1007/s10021-015-9867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9867-8

Keywords

Navigation