Skip to main content
Log in

High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban Catchments

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The influx of atmospheric nitrogen to soils and surfaces in arid environments is of growing concern due to increased N emissions and N usage associated with urbanization. Atmospheric nitrogen inputs to the critical zone can occur as wet (rain or snow) or dry (dust or aerosols) deposition, and can lead to eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. The objective of this research was to use the δ15N, δ18O, and Δ17O values of atmospheric nitrate (NO3 ) (precipitation and aerosols) and NO3 in runoff to assess the importance of N deposition and turnover in semi-arid urban watersheds. Data show that the fractions of atmospheric NO3 exported from all the urban catchments, throughout the study period, were substantially higher than in nearly all other ecosystems studied with mean atmospheric contributions of 38% (min 0% and max 82%). These results suggest that catchment and stream channel imperviousness enhance atmospheric NO3 export due to inefficient N cycling and retention. In contrast, catchment and stream channel perviousness allow for enhanced N processing and therefore reduced atmospheric NO3 export. Overall high fractions of atmospheric NO3 were primarily attributed to slow N turn over in arid/semi-arid ecosystems. A relatively high fraction of nitrification NO3 (~30%) was found in runoff from a nearly completely impervious watershed (91%). This was attributed to nitrification of atmospheric NH4 + in dry-deposited dust, suggesting that N nitrifiers have adapted to urban micro niches. Gross nitrification rates based on NO3 Δ17O values ranged from a low 3.04 ± 2 kg NO3-N km−2 day−1 in highly impervious catchments to a high of 10.15 ± 1 kg NO3-N km−2 day−1 in the low density urban catchment. These low gross nitrification rates were attributed to low soil C:N ratios that control gross autotrophic nitrification by regulating gross NH4 + production rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams MB. 2003. Ecological issues related to N deposition to natural ecosystems: research needs. Environ Intern 29(2–3):189–99.

    Article  CAS  Google Scholar 

  • Arnold CL, Gibbons CJ. 1996. Impervious surface coverage—the emergence of a key environmental indicator. J Am Plan Assoc 62(2):243–58.

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221–35.

    Article  PubMed  Google Scholar 

  • Barnes RT, Raymond PA, Casciotti KL. 2008. Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S. Biogeochemistry 90(1):15–27.

    Article  CAS  Google Scholar 

  • Berman T, Bronk DA. 2003. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31(3):279–305. doi:10.3354/ame031279.

    Article  Google Scholar 

  • Boettcher J, Strebel O, Voerkelius S, Schmidt HL. 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114(3–4):413–24.

    Article  CAS  Google Scholar 

  • Bunton CA, Llewellyn DR, Stedman G. 1959. 116. Oxygen exchange between nitrous acid and water. J Chem Soc 1959:568–73.

    Article  Google Scholar 

  • Burns DA, Boyer EW, Elliott EM, Kendall C. 2009. Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis. J Environ Qual 38:1149–59.

    Article  CAS  PubMed  Google Scholar 

  • Campbell JL, Mitchell MJ, Mayor B. 2006. Isotopic assessment of NO3 and SO4 2− mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York. J Geophys Res 111:G04007.

    Google Scholar 

  • Carle MV, Halpin PN, Stow CA. 2005. Patterns of watershed urbanization and impacts on water quality. J Am Water Resour Assoc 41(3):693–708.

    Article  Google Scholar 

  • Casciotti KL, Sigman DM, Hastings MG, Bohlke JK, Hilkert A. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74(19):4905–12.

    Article  CAS  PubMed  Google Scholar 

  • Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH. 2002. Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–85.

    Article  CAS  Google Scholar 

  • Chen DJZ, MacQuarrie KTB. 2005. Correlation of δ15N and δ18O in NO3 during denitrification in groundwater. J Environ Eng Sci 4(3):221–6. doi:10.1139/s05-002.

    Article  CAS  Google Scholar 

  • Darrouzet-Nardi A, Erbland J, Bowman WD et al. 2012. Landscape-level nitrogen import and export in an ecosystem with complex terrain, Colorado Front Range. Biogeochemistry 109:271–85. doi:10.1007/s10533-011-9625-8.

    Article  CAS  Google Scholar 

  • Davidson ES. 1973. Geohydrology and water resources of the Tuscon Basin, Arizona, edited by United States Geological Survey. Washington, DC: United States Government Printing Office.

    Google Scholar 

  • Dejwakh NR, Meixner T, Michalski G, McIntosh J. 2012. Using 17O to investigate nitrate sources and sinks in a semi-arid groundwater system. Environ Sci Technol 46:745–51.

    Article  CAS  PubMed  Google Scholar 

  • Diem JE, Comrie AC. 2001. Allocating anthropogenic pollutant emissions over space: application to ozone pollution management. J Environ Manag 63:425–47.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC. 2012. Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Ecosyst Ecol 170:799–808.

    Google Scholar 

  • Durka W, Schulze E-D, Gebauer G, Voerkelius S. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–7.

    Article  CAS  Google Scholar 

  • Elliott EM, Kendall C, Boyer EW, Burns DA, Lear GG, Golden HE, Harlin K, Bytnerowicz A, Butler TJ, Glatz R. 2009. Dual nitrate isotopes in dry deposition: utility for partitioning NO x source contributions to landscape nitrogen deposition. J Geophys Res 114:G04020.

    Google Scholar 

  • Ezcurra E. 2006. Global deserts outlook. Nairobi: United Nations Environment Programme.

    Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P. 2003a. Ecological effects of nitrogen deposition in the western United States. Bioscience 53(4):404–20.

    Article  Google Scholar 

  • Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO. 2003b. Nitrogen emissions, deposition, and monitoring in the Western United States. Bioscience 53(4):391–403.

    Article  Google Scholar 

  • Freyer HD. 1991. Seasonal-variation of 15N/14N ratios in atmospheric nitrate species. Tellus B 43(1):30–44.

    Article  Google Scholar 

  • Gallo EL, Lohse KA, Brooks PD, McIntosh JC, Meixner T, McLain JET. 2012. Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment. J Hydrol 470–471:98–110.

    Article  Google Scholar 

  • Gallo EL, Brooks PD, Lohse KA, McLain JET. 2013a. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments. J Hydrol 485:37–53. doi:10.1016/j.jhydrol.2012.11.054.

    Article  Google Scholar 

  • Gallo EL, Brooks PD, Lohse KA, McLain JET. 2013b. Temporal patterns and controls on runoff magnitude and solution chemistry of urban catchments in the semiarid southwestern United States. Hydrol Process 27(7):995–1010. doi:10.1002/hyp.9199.

  • Gallo EL, Lohse KA, Brooks PD, Ferlin CM, Meixner T. 2013c. Physical and biological controls on biogeochemical processes of semi-arid urban ephemeral waterways. Biogeochemistry. doi:10.1007/s10533-013-9927-0.

    Google Scholar 

  • Garcia M, Peters-Lidard CD, Goodrich DC. 2008. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resour Res 44(5):W05S13.

    Article  Google Scholar 

  • Gazis C, Feng X. 2004. A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119:97–111.

    Article  Google Scholar 

  • Gelt J, Henderson J, Seasholes K, Tellman B, Woodard G, Carpenter K, Hudson C, Sherif S. 1999. Water in the Tucson area: seeking sustainability. Tucson: The University of Arizona, Water Resources Research Center. pp 1–55.

    Google Scholar 

  • Goodale CL, Thomas SA, Fredriksen G, Elliott EM, Flinn KM, Butler TJ, Walter MT. 2009. Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry 93:197–218.

    Article  CAS  Google Scholar 

  • Granger J, Sigman DM. 2009. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectr 23:3753–62.

    Article  CAS  Google Scholar 

  • Granger J, Sigman DM, Needoba JA, Harrison PJ. 2004. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceaogr 49(5):1763–73.

    Article  CAS  Google Scholar 

  • Groffman PM, Law NL, Belt KT, Band LE, Fisher GT. 2004. Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7(4):393–403.

    Article  CAS  Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA. 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–122.

  • Hall SJ, Huber D, Grimm NB. 2008. Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res 113:G01016.

    Google Scholar 

  • Hall SJ, Sponseller R, Grimm NB, Huber D, Kaye JP, Clark C, Collins SL. 2011. Ecosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert. Ecol Appl 21(3):640–60.

    Article  PubMed  Google Scholar 

  • Harms TK, Grimm NB. 2008. Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone. J Geophys Res 113:G01020.

    Google Scholar 

  • Hatt BE, Fletcher TD, Walsh CJ, Taylor SL. 2004. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small catchments. Environ Manag 34(1):112–24.

    Article  Google Scholar 

  • Horibe Y, Shigehara K, Takakuwa Y. 1973. Isotopic separation factors of carbon-dioxide–water system and isotopic composition of atmospheric oxygen. J Geophys Res 78:2625–9.

    Article  CAS  Google Scholar 

  • Kaiser J, Hastings MG, Houlton BZ, Rockmann T, Sigman DM. 2007. Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79(2):599–607.

    Article  CAS  PubMed  Google Scholar 

  • Kaushal SS, Groffman PM, Band LE, Elliott EM, Shields CA, Kendall C. 2011. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–32.

    Article  CAS  PubMed  Google Scholar 

  • Kendall C. 1998a. Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ, Eds. Isotope tracers in catchment hydrology. Amsterdam: Elsevier. p 519–76.

    Chapter  Google Scholar 

  • Kendall C. 1998b. Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ, Eds. Isotope tracers in catchment hydrology. Amsterdam: Elsevier Science. p 519–76.

    Chapter  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener RH, Lajtha K, Eds. Stable isotopes in ecology and environmental science. Malden: Blackwell. p 375–449.

    Chapter  Google Scholar 

  • Kroopnick P, Craig H. 1972. Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175:54–5.

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa M, Koba K, Isobe K, Tateno R, Nakanishi A, Inagaki Y, Toda H, Otsuka S, Senoo K, Suwa Y, Yoh M, Urakawa R, Shibata H. 2011. Gross nitrification rates in four Japanese forest soils: heterotrophic versus autotrophic and the regulation factors for the nitrification. J For Res 16:363–73.

    Article  CAS  Google Scholar 

  • Lewis DB, Grimm NB. 2007. Hierarchical regulation of nitrogen export from urban catchments: interactions of storms and landscapes. Ecol Appl 17(8):2347–64.

    Article  PubMed  Google Scholar 

  • Lohse KA, Hope D, Sponseller R, Allen JO, Grimm NB. 2008. Atmospheric deposition of carbon and nutrients across an arid metropolitan area. Sci Total Environ 402:95–105.

    Article  CAS  PubMed  Google Scholar 

  • Lovett GM, Jones CG, Turner MG, Weathers KC. 2005. Ecosystem function in heterogeneous landscapes. New York: Springer.

    Book  Google Scholar 

  • Mayer B, Bollwerk SM, Mansfeldt T, Hutter B, Veizer J. 2001. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim Cosmochim Acta 65(16):2743–56.

    Article  CAS  Google Scholar 

  • Mayer B, Boyer EW, Goodale CL, Jaworski NA, Van Breemen N, Howarth RW, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, Van Dam D, Hetling LJ, Nosal M, Paustian K. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry 57(58):171–97.

    Article  Google Scholar 

  • McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP. 2008. Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry 87(2):143–55.

    Article  CAS  Google Scholar 

  • Michalski G, Scott Z, Kabiling M, Thiemens M. 2003a. First measurements and modeling of Δ17O in atmospheric nitrate. Geophys Res Lett 30(16):1870.

    Article  Google Scholar 

  • Michalski G, Scott Z, Kabiling M, Thiemens M. 2003b. First measurements and modeling of Δ17O in atmospheric nitrate. Geophys Res Lett 30(16):1870.

    Article  Google Scholar 

  • Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A, Allen E, Thiemens M. 2004a. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ Sci Technol 38(7):2175–81.

    Article  CAS  PubMed  Google Scholar 

  • Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A, Allen E, Thiemens M. 2004b. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ Sci Technol 38(7):2175–81.

    Article  CAS  PubMed  Google Scholar 

  • Miller MF. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66(11):1881–9.

    Article  CAS  Google Scholar 

  • Morin E, Goodrich DC, Maddox RA, Gao X, Gupta HV, Sorooshian S. 2006. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Adv Water Resour 29(6):843–60.

    Article  Google Scholar 

  • Morin S, Savarino J, Frey MM, Domine F, Jacobi HW, Kaleschke L, Martins JMF. 2009. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65 degrees S to 79 degrees N. J Geophys Res 114:D05303. doi:10.1029/2008JD010696.

    Google Scholar 

  • Munger JW, Fan SM, Bakwin PS, Goulden ML, Goldstein AH, Colman AS, Wofsy SC. 1998. Regional budgets for nitrogen oxides from continental sources: Variations of rates for oxidation and deposition with season and distance from source regions. J Geophys Res 103(D7):8355–68.

    Article  CAS  Google Scholar 

  • Norman LM, Feller M, Guertin DP. 2009. Forecasting urban growth across the United States–Mexico border. Comput Environ Urban Syst 33(2):150–9.

    Article  Google Scholar 

  • Pardo LH, Kendall C, Pett-Ridge J, Chang CCY. 2004. Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 18:2699–712.

    Article  Google Scholar 

  • Parker SS, Schimel JP. 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–92.

    Article  Google Scholar 

  • Prosser JI. 2011. Soil nitrifiers and nitrification. In: Ward BB, Arp DJ, Klotz MG, Eds. Nitrification. New York: American Society for Microbiology. p 347–62.

    Google Scholar 

  • Riha, K. 2013. The use of stable isotopes to constrain the nitrogen cycle. PhD Dissertation, Purdue University.

  • Saetre P, Stark JM. 2005. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142(2):247–60.

    Article  PubMed  Google Scholar 

  • Sebestyen SD, Boyer EW, Shanley JB, Kendall C, Doctor DH, Aiken GR, Ohte N. 2008. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest. Water Resour Res 44:12.

    Article  Google Scholar 

  • Sebilo M, Billen G, Grably M, Mariotti A. 2003. Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51.

    Article  CAS  Google Scholar 

  • Snider DM, Spoelstra J, Schiff SL, Venkiteswaran JJ. 2010. Stable oxygen isotope ratios of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and temperate forest soils. Environ Sci Technol 44:5358–64.

    Article  CAS  PubMed  Google Scholar 

  • Spoelstra J, Schiff SL, Elgood RJ, Semkin RG, Jeffries DS. 2001. Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–44.

    Article  CAS  Google Scholar 

  • Stark JM, Hart SC. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385(6611):61–4.

    Article  CAS  Google Scholar 

  • Sullivan BW, Selmants PC, Hart SC. 2012. New evidence that high potential nitrification rates occur in soils during dry seasons: are microbial communities metabolically active during dry seasons? Soil Biol Biogeochem 53:28–31.

    Article  CAS  Google Scholar 

  • Syed KH, Goodrich DC, Myers DE, Sorooshian S. 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J Hydrol 271(1–4):1–21.

    Article  Google Scholar 

  • U.S. Census Bureau, Tucson, Arizona, 2012.

  • U.S. Environmental Protection Agency, The National Emissions Inventory, 2012.

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–50.

  • Walker GR, Hughes MW, Allison GB, Barnes CJ. 1988. The movement of isotopes of water during evaporation from a bare soil surface. J Hydrol 97:181–97.

    Article  CAS  Google Scholar 

  • Welter JR, Fisher SG, Grimm NB. 2005. Nitrogen transport and retention in an arid land watershed: influence of storm characteristics on terrestrial–aquatic linkages. Biogeochemistry 76:421–40.

    Article  CAS  Google Scholar 

  • Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE. 2001. 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol 252:174–88.

    Article  CAS  Google Scholar 

  • Worsfold PJ, Monbet P, Tappin AD, Fitzsimons MF, Stiles DA, McKelvie ID. 2008. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review. Anal Chim Acta 624(1):37–58. doi:10.1016/j.aca.2008.06.016.

    Article  CAS  PubMed  Google Scholar 

  • Wright, WE. 2001. δD and δ18O in mixed conifer systems in the U.S. Southwest: the potential of Δ18O in Pinus ponderosa tree rings as a natural environmental recorder, PhD The University of Arizona, Ann Arbor, MI.

Download references

Acknowledgments

This study was supported by National Science Foundation (NSF) DEB 0918708 and EF1063362. Dr. Kathleen Lohse was supported by the National Science Foundation under Award Number EPS-0814387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Michalski.

Additional information

Author contributions

Riha: data collection, isotope analysis, data interpretation, lead author Michalski: isotope analysis, data interpretation, lead author, advisor to Riha Lohse: field data collection, geochemical analysis, data interpretation, lead author Gallo: data collection, GIS analysis, data interpretation, co-author Brookes: field support, data collection, data interpretation, editor Meixner: data interpretation, meta data, modeling, editor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riha, K.M., Michalski, G., Gallo, E.L. et al. High Atmospheric Nitrate Inputs and Nitrogen Turnover in Semi-arid Urban Catchments. Ecosystems 17, 1309–1325 (2014). https://doi.org/10.1007/s10021-014-9797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9797-x

Keywords

Navigation