Skip to main content
Log in

“Hotspots” and “Hot Moments” of Denitrification in Urban Brownfield Wetlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The influence of hydrology and soil properties on disproportionately high (“hot”) rates of nitrate (NO3 ) removal via denitrification has been relatively well established. It is poorly understood, however, how the unique soil characteristics of brownfield wetlands contribute to or hinder denitrification. In this study, we examined drivers of “hot” denitrification rates over time (“hot moments”) and space (“hotspots”) in a watershed located on an unrestored brownfield in New Jersey, USA. We carried out measurements of denitrification over 9-day sequences during three seasons in sites with the same vegetation (Phragmites australis) but different soils (fill material, remnant marsh soils, flooded organic-rich soils). Denitrification rates above the 3rd quartile value of the data distribution were defined as “hot” and the most important drivers of these rates were determined using mixed models. Porosity and NO3 availability were the strongest spatial and temporal predictors, respectively, of high denitrification rates, with coarse-textured, unflooded fill materials unexpectedly supporting the highest rates. These results suggest that pore-scale hydrology is a more complex controller of wetland denitrification than previously thought. Course-textured, unflooded soils have high fractions of air-filled pores relative to flooded soils, leading to more endogenous NO3 production, and less diffusion constraints than fine-textured soils, leading to higher NO3 availability to denitrifiers in suboxic pores. Laboratory studies confirmed denitrifiers were limited by NO3 availability. However, denitrification rates in all soils matched or exceeded atmospheric NO3 deposition and stormwater NO3 loading at the site, suggesting that brownfields may play an important role in NO3 removal from urban stormwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams DD. 2005. Diffuse flux of greenhouse gases—methane and carbon dioxide—at the sediment–water interface of some lakes and reservoirs of the world. In: Tremblay A, Varfalvy L, Roehm C, Garneau M, Eds. Greenhouse gas emissions—fluxes and processes: hydroelectric reservoirs and natural environments. New York: Springer. p 129–54.

    Chapter  Google Scholar 

  • Arnold M. 2008. A historical perspective on the urban wetlands of the Teaneck Creek Conservancy. Urban Ecosyst 5:153–65.

    Google Scholar 

  • Aulakh MS, Rennie DA. 1985. Gaseous nitrogen losses from conventional and chemical summer fallow. Can J Soil Sci 65:195–203.

    Article  CAS  Google Scholar 

  • Bechtold JS, Edwards RT, Naiman RJ. 2003. Biotic versus hydrologic control over seasonal nitrate leaching in a floodplain forest. Biogeochemistry 63:53–71.

    Article  CAS  Google Scholar 

  • Blake GR, Hartge KH. 1986. Particle Density. In: Klute AK, Ed. Methods of soil analysis, Part 1—physical and mineralogical methods. Madison: Soil Science Society of America. p 378–9.

    Google Scholar 

  • Bolund P, Hunhammar S. 1999. Ecosystem services in urban areas. Ecol Econ 29:293–301.

    Article  Google Scholar 

  • Boyer EW, Alexander RB, Parton WJ, Li CS, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Gross SJ. 2006. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16:2123–42.

    Article  PubMed  Google Scholar 

  • Brady NC, Weil RR. 2002. The nature and properties of soils. 13th edn. Upper Saddle River: Prentice-Hall Inc.

    Google Scholar 

  • Christensen S, Tiedje JM. 1990. Brief and vigorous N2O production by soil at spring thaw. J Soil Sci 41:1–4.

    Article  CAS  Google Scholar 

  • Clement JC, Pinay G, Marmonier P. 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 31:1025–37.

    Article  PubMed  CAS  Google Scholar 

  • Collins KA, Lawrence TJ, Stander EK, Jontos RJ, Kaushal SS, Newcomer TA, Grimm NB, Cole Ekberg ML. 2010. Opportunities and challenges for managing nitrogen in urban stormwater: a review and synthesis. Ecol Eng 36:1507–19. http://www.sciencedirect.com/science/article/B6VFB-504C9C8-1/2/e633ddae9903b43204c7cab66f8af504.

  • Dai Z, Trettin C, Li C, Li H, Sun G, Amatya D. 2012. Effect of assessment scale on spatial and temporal variations in CH4, CO2 and N2O fluxes in a forested wetland. Water Air Soil Pollut 223:253–65. doi:10.1007/s11270-011-0855-0.

    Article  CAS  Google Scholar 

  • Darrouzet-Nardi A, Bowman W. 2011. Hot spots of inorganic nitrogen availability in an alpine-subalpine ecosystem, Colorado front range. Ecosystems 14:848–63. doi:10.1007/s10021-011-9450-x.

    Article  CAS  Google Scholar 

  • De Kimpe CR, Morel JL. 2000. Urban soil management: a growing concern. Soil Sci 165:31–40.

    Article  Google Scholar 

  • Dexter AR. 2004. Soil physical quality—Part III: unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120:227–39.

    Article  Google Scholar 

  • Driscoll CT, Whitall D, Aber J, Boyer E, Castro M, Cronan C, Goodale CL, Groffman P, Hopkinson C, Lambert K, Lawrence G, Ollinger S. 2003. Nitrogen pollution in the northeastern United States: sources, effects, and management options. Bioscience 53:357–74.

    Article  Google Scholar 

  • Effland WR, Pouyat RV. 1997. The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–28.

    Article  Google Scholar 

  • Ehrenfeld JG. 2004. The expression of multiple functions in urban forested wetlands. Wetlands 24:719–33.

    Article  Google Scholar 

  • Ehrenfeld JG, Cutway HB, Hamilton RI, Stander E. 2003. Hydrologic description of forested wetlands in northeastern New Jersey, USA—an urban/suburban region. Wetlands 23:685–700.

    Article  Google Scholar 

  • Fenchel T, King GM, Blackburn TH. 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. 2nd edn. San Diego: Academic Press.

    Google Scholar 

  • Gee GW, Bauder JW. 1986. Particle size analysis. In: Klute A, Ed. Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd edn. Madison: American Society of Agronomy. p 383–411.

    Google Scholar 

  • Groffman PM, Crawford MK. 2003. Denitrification potential in urban riparian zones. J Environ Qual 32:1144–9.

    Article  PubMed  CAS  Google Scholar 

  • Groffman PM, Tiedje JM. 1989a. Denitrification in north temperate forest soils—spatial and temporal patterns at the landscape and seasonal scales. Soil Biol Biochem 21:613–20.

    Article  Google Scholar 

  • Groffman PM, Tiedje JM. 1989b. Denitrification in north temperate forest soils: relationships between denitrification and environmental factors at the landscape scale. Soil Biol Biochem 21:621–6.

    Article  Google Scholar 

  • Groffman PM, Tiedje JM. 1991. Relationships between denitrification, CO2 production and air-filled porosity in soils of different texture and drainage. Soil Biol Biochem 23:299–302.

    Article  CAS  Google Scholar 

  • Groffman PM, Holland EA, Myrold DD, Robertson GP, Zou X. 1999. Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P, Eds. Standard soil methods for long term ecological research. New York: Oxford University Press. p 272–88.

    Google Scholar 

  • Groffman PM, Boulware NJ, Zipperer WC, Pouyat RV, Band LE, Colosimo MF. 2002. Soil nitrogen cycle processes in urban riparian zones. Environ Sci Technol 36:4547–52.

    Article  PubMed  CAS  Google Scholar 

  • Groffman PM, Bain DJ, Band LE, Belt KT, Brush GS, Grove JM, Pouyat RV, Yesilonis IC, Zipperer WC. 2003. Down by the riverside: urban riparian ecology. Front Ecol Environ 1:315–21.

    Article  Google Scholar 

  • Groffman P, Butterbach-Bahl K, Fulweiler R, Gold A, Morse J, Stander E, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 92:49–77. doi:10.1007/s10533-008-9277-5.

    Article  Google Scholar 

  • Grundmann GL, Rolston DE. 1987. A water function approximation to degree of anaerobiosis associated with denitrification. Soil Sci 144:437–41.

    Article  CAS  Google Scholar 

  • Gu C, Anderson W, Maggi F. 2012. Riparian biogeochemical hot moments induced by stream fluctuations. Water Resour Res 48:W09546. doi:10.1029/2011WR011720.

    Google Scholar 

  • Hanson GC, Groffman PM, Gold AJ. 1994. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs. J Environ Qual 23:917–22.

    Article  CAS  Google Scholar 

  • Harms TK, Grimm NB. 2008. Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone. J Geophys Res 113:G101020.

    Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK. 1994. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomed P, Bezdicek D, Smith S, Tabatabai A, Wollum A, Eds. Methods of soil analysis, Part 2—microbiological and biochemical properties. Madison: Soil Science Society of America. p 985–1018.

    Google Scholar 

  • Hefting M, Clement JC, Dowrick D, Cosandey AC, Bernal S, Cimpian C, Tatur A, Burt TP, Pinay G. 2004. Water table elevations controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67:113–34.

    Article  CAS  Google Scholar 

  • Hernandez ME, Mitsch WJ. 2007. Denitrification in created riverine wetlands: influence of hydrology and season. Ecol Eng 30:78–88.

    Article  Google Scholar 

  • Hill AR, Cardaci M. 2004. Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Sci Soc Am J 68:320–5.

    Article  CAS  Google Scholar 

  • Howarth RW. 2004. Human acceleration of the nitrogen cycle: drivers, consequences, and steps toward solutions. Water Sci Technol 49:7–13.

    PubMed  CAS  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL. 1996. Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139.

    Article  CAS  Google Scholar 

  • Johnson DW, Glass DW, Murphy JD, Stein CM, Miller WW. 2010. Nutrient hot spots in some Sierra Nevada forest soils. Biogeochemistry 101:93–103.

    Article  CAS  Google Scholar 

  • Johnston CA, Bridgham SD, Schubauer-Berigan JP. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Sci Soc Am J 65:557–77.

    Article  CAS  Google Scholar 

  • Koponen HT, Duran CE, Maljanen M, Hytonen J, Martikainen PJ. 2006. Temperature responses of NO and N2O emissions from boreal organic soil. Soil Biol Biochem 38:1779–87.

    Article  CAS  Google Scholar 

  • Lesage P, Deschenes L, Samson R. 2007. Evaluating holistic environmental consequences of brownfield management options using consequential life cycle assessment for different perspectives. Environ Manag 40:323–37.

    Article  Google Scholar 

  • Machefert SE, Dise NB. 2004. Hydrological controls on denitrification in riparian ecosystems. Hydrol Earth Syst Sci 8:686–94.

    Article  CAS  Google Scholar 

  • Mayr T, Jarvis NJ. 1999. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model. Geoderma 91:1–9.

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.

    Article  CAS  Google Scholar 

  • Meyers T, Sickles J, Dennis R, Russell K, Galloway J, Church T. 2001. Atmospheric nitrogen deposition to coastal estuaries and their watersheds. In: Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE, Turner RE, Eds. Nitrogen loading in coastal water bodies: an atmospheric perspective. Washington, DC: American Geophysical Union, Coastal and Estuarine Studies. p 53–76.

    Chapter  Google Scholar 

  • Minchinton TE, Bertness MD. 2003. Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13:1400–16.

    Article  Google Scholar 

  • Mitsch WJ, Day JW, Gilliam JW, Groffman PM, Hey DL, Randall GW, Wang NM. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: strategies to counter a persistent ecological problem. Bioscience 51:373–88.

    Article  Google Scholar 

  • Motulsky H, Christopoulos A. 2004. Comparing models using Akaike’s Information Criterion (AIC). Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. New York: Oxford University Press. p 143–8.

    Google Scholar 

  • Myrold DD, Tiedje JM. 1985. Diffusional constraints on denitrification in soil. Soil Sci Soc Am J 49:651–7.

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Ed. Methods of soil analysis, Part 3—chemical methods. Madison: Soil Science Society of America. p 961–1010.

    Google Scholar 

  • Nelson WM, Gold AJ, Groffman PM. 1995. Spatial and temporal variation in groundwater nitrate removal in a riparian forest. J Environ Qual 24:691–9.

    Article  CAS  Google Scholar 

  • Novosad N, Kay BD. 2007. Water-filled microbially habitable pores: relation to denitrification. Can J Soil Sci 87:269–80.

    Article  CAS  Google Scholar 

  • Otto S, Groffman PM, Findlay SEG, Arreola AE. 1999. Invasive plant species and microbial processes in a tidal freshwater marsh. J Environ Qual 28:1252–7.

    Article  CAS  Google Scholar 

  • Palta MM, Ehrenfeld JG, Groffman PM. 2013. Denitrification and potential nitrous oxide and carbon dioxide production in brownfield wetland soils. J Environ Qual 42:1507–17.

    Article  PubMed  CAS  Google Scholar 

  • Parkin TB. 1987. Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51:1194–9.

    Article  CAS  Google Scholar 

  • Parsons LL, Murray RE, Smith MS. 1991. Soil denitrification dynamics: spatial and temporal variations of enzyme activity, populations, and nitrogen gas loss. Soil Sci Soc Am J 55:90–5.

    Article  CAS  Google Scholar 

  • Paul MJ, Meyer JL. 2001. Streams in the urban landscape. Annu Rev Ecol Syst 32:333–65.

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Groffman PM, Band LE, Boone CG, Burch WR, Grimmond CSB, Hom J, Jenkins JC, Law NL, Nilon CH, Pouyat RV, Szlavecz K, Warren PS, Wilson MA. 2008. Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. Bioscience 58:139–50.

    Article  Google Scholar 

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Decamps H. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–82.

    Article  Google Scholar 

  • Pinay G, Gumiero B, Tabacchi E, Gimenez O, Tabacchi-Planty AM, Hefting MM, Burt TP, Black VA, Nilsson C, Iordache V, Bureau F, Vought L, Petts GE, Decamps H. 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw Biol 52:252–66.

    Article  CAS  Google Scholar 

  • Rawls WJ, Brakensiek DL, Soni B. 1983. Agricultural management effects on soil-water processes 1 Soil-water retention and green and AMPT infiltration parameters. Trans ASAE 26:1747–52.

    Article  Google Scholar 

  • SAS. 2008. SAS/STAT user’s guide, release 9.2. Cary: SAS Institute Incorporated.

    Google Scholar 

  • Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–90.

    Article  PubMed  CAS  Google Scholar 

  • Seki K. 2007. SWRC fit—a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol Earth Syst Sci 4:407–37.

    Article  Google Scholar 

  • Shiozawa S, Campbell GS. 1991. On the calculation of mean particle diameter and standard-deviation from sand, silt, and clay fractions. Soil Sci 152:427–31.

    Article  Google Scholar 

  • Silliman BR, Bertness MD. 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18:1424–34.

    Article  Google Scholar 

  • Song F, Gao Y. 2009. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmos Environ 43:4903–13.

    Article  CAS  Google Scholar 

  • Spieles DJ, Mitsch WJ. 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecol Eng 14:77–91.

    Article  Google Scholar 

  • Stander EK, Ehrenfeld JG. 2009. Rapid assessment of urban wetlands: do hydrogeomorphic classification and reference criteria work? Environ Manag 43:725–42.

    Article  Google Scholar 

  • Turpin B, Seitzinger S, Ravit B. 2006. A study to link atmospheric N deposition with surface and ground water N and denitrification capabilities in an urban New Jersey wetland. New Brunswick: Water Resources Research Institute.

    Google Scholar 

  • Tzoraki O, Nikolaidis NP, Amaxidis Y, Skoulikidis NT. 2007. In-stream biogeochemical processes of a temporary river. Environ Sci Technol 41:1225–31.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of Housing and Urban Development. 2013. http://portal.hud.gov/hudportal/HUD?src=/program_offices/comm_planning/economicdevelopment/programs/bedi/bfieldsfaq. Accessed 2 July 2013.

  • Van Genuchten M. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–8.

    Article  Google Scholar 

  • Vidon P. 2010. Riparian zone management and environmental quality: a multi-contaminant challenge. Hydrol Process 4:153–5. doi:10.100/hyp.7740.

    Google Scholar 

  • Vidon P, Allan C, Burns D, Duval TP, Gurwick N, Inamdar S, Lowrance R, Okay J, Scott D, Sebestyen S. 2010. Hot spots and hot moments in riparian zones: potential for improved water quality management. JAWRA J Am Water Resour Assoc 46:278–98. doi:10.1111/j.1752-1688.2010.00420.x.

    Article  CAS  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP. 2005. The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–23.

    Article  Google Scholar 

  • Watts SH, Seitzinger SP. 2000. Denitrification rates in organic and mineral soils from riparian sites: a comparison of N-2 flux and acetylene inhibition methods. Soil Biol Biochem 32:1383–92.

    Article  CAS  Google Scholar 

  • Well R, Hoper H, Mehranfar O, Meyer K. 2005. Denitrification in the saturated zone of hydromorphic soils—laboratory measurement, regulating factors and stochastic modeling. Soil Biol Biochem 37:1822–36.

    Article  CAS  Google Scholar 

  • Wosten JHM, Lilly A, Nemes A, Le Bas C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–85.

    Article  Google Scholar 

  • Zhu Q, Schmidt JP, Bryant RB. 2012. Hot moments and hot spots of nutrient losses from a mixed land use watershed. J Hydrol 414:393–404.

    Article  Google Scholar 

Download references

Acknowlegments

This manuscript is dedicated in memory of Joan G. Ehrenfeld, a phenomenal ecosystem ecologist. The authors wish to thank Tracy Margaret, Lea Johnson, Faye LaFond, Cara Faillace, Kenneth Elgersma, Ai Wen, Jodi Messina, Shen Yu, Beth Ravit, Cathleen McFadden, and Teaneck Creek Conservancy for lab and field assistance. Daniel Gimenez provided invaluable feedback on the manuscript and assisted in water retention curve calculations; Mari Palta and Stuart Findlay assisted in statistical analysis of the data. Funding for the study was provided by the US EPA STAR graduate fellowship program, and by grants from the New Jersey Water Resources Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica M. Palta.

Additional information

Joan G. Ehrenfeld: Deceased.

Author Contributions

Monica M. Palta: conceived of and designed study; performed research; analyzed data; wrote the paper. Joan G. Ehrenfeld: conceived of and designed study. Peter M. Groffman: conceived of and designed study; wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palta, M.M., Ehrenfeld, J.G. & Groffman, P.M. “Hotspots” and “Hot Moments” of Denitrification in Urban Brownfield Wetlands. Ecosystems 17, 1121–1137 (2014). https://doi.org/10.1007/s10021-014-9778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9778-0

Keywords

Navigation