Skip to main content

Advertisement

Log in

Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

For decades, the productivity of tropical montane cloud forests (TMCF) has been assumed to be lower than in tropical lowland forests due to nutrient limitation, lower temperatures, and frequent cloud immersion, although actual estimates of gross primary productivity (GPP) are very scarce. Here, we present the results of a process-based modeling estimate of GPP, using a soil–plant–atmosphere model, of a high elevation Peruvian TMCF. The model was parameterized with field-measured physiological and structural vegetation variables, and driven with meteorological data from the site. Modeled transpiration corroborated well with measured sap flow, and simulated GPP added up to 16.2 ± SE 1.6 Mg C ha−1 y−1. Dry season GPP was significantly lower than wet season GPP, although this difference was 17% and not caused by drought stress. The strongest environmental controls on simulated GPP were variation of photosynthetic active radiation and air temperature (T air). Their relative importance likely varies with elevation and the local prevalence of cloud cover. Photosynthetic parameters (V cmax and J max) and leaf area index were the most important non-environmental controls on GPP. We additionally compared the modeled results with a recent estimate of GPP of the same Peruvian TMCF derived by the summing of ecosystem respiration and net productivity terms, which added up to 26 Mg C ha−1 y−1. Despite the uncertainties in modeling GPP we conclude that at this altitude GPP is, conservatively estimated, 30–40% lower than in lowland rainforest and this difference is driven mostly by cooler temperatures than changes in other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adamek M, Corre MD, Holscher D. 2009. Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. J Trop Ecol 25:637–47.

    Article  Google Scholar 

  • Bruijnzeel LA, Veneklaas EJ. 1998. Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79:3–9.

    Article  Google Scholar 

  • Čermák J, Deml M, Penka M. 1973. A new method of sap flow rate determination in trees. Biol Plant 15:171–8.

    Article  Google Scholar 

  • Čermák J, Kucera J, Nadezhdina N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees Struct Funct 18:529–46.

    Article  Google Scholar 

  • Domingues TF, Berry JA, Martinelli LA, Ometto J, Ehleringer JR. 2005. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interact 9(17):1–23.

    Article  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA. 1980. A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172(3):889–902.

    Google Scholar 

  • Fisher JB, Malhi Y, Bonal D, Da Rocha HR, De AraÚJo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H, Kumagai TO, Loescher HW, Miller S, Nobre AD, Nouvellon Y, Oberbauer SF, Panuthai S, Roupsard O, Saleska S, Tanaka K, Tanaka N, Tu KP, Von Randow C. 2009. The land–atmosphere water flux in the tropics. Glob Change Biol 15:2694–714.

    Article  Google Scholar 

  • Fisher RA, Williams M, da Costa AL, Malhi Y, da Costa RF, Almeida S, Meir P. 2007. The response of an eastern amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13:2361–78.

    Article  Google Scholar 

  • Fisher RA, Williams M, de Lourdes Ruivo M, de Costa AL, Meir P. 2008. Evaluating climatic and soil water controls on evapotranspiration at two amazonian rainforest sites. Agric For Meteorol 148:850–61.

    Article  Google Scholar 

  • Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P. 2006. Evidence from amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–65.

    Article  PubMed  Google Scholar 

  • Fox A, Williams M, Richardson AD, Cameron D, Gove JH, Quaife T, Ricciuto D, Reichstein M, Tomelleri E, Trudinger CM, Van Wijk MT. 2009. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agric For Meteorol 149(10):1597–615.

    Article  Google Scholar 

  • Girardin CAJ, Malhi Y, AragÃO LEOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16:3176–92.

    Article  Google Scholar 

  • Girardin CAJ et al. 2013. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecol Divers 7(1–2):55–69.

    Google Scholar 

  • Grubb PJ, Whitmore TC. 1966. A comparison of montane and lowland rain forest in Ecuador. II. Climate and its effects on distribution and physiognomy of forests. J Ecol 54:303–33.

    Article  Google Scholar 

  • Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H. 2008. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol 148:761–75.

    Article  Google Scholar 

  • Hutyra LR, Munger JW, Hammond-Pyle E, Saleska SR, Restrepo-Coupe N, Daube BC, de Camargo PB, Wofsy SC. 2008. Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome. Agric For Meteorol 148:1266–79.

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ. 1994. Atmospheric boundary layer flows: their structure and measurement. Oxford: Oxford University Press.

    Google Scholar 

  • Kitayama K, Aiba SI. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51.

    Article  Google Scholar 

  • Lemmon PE. 1956. A spherical densiometer for estimating forest overstory density. For Sci 2:314–20.

    Google Scholar 

  • Letts MG, Mulligan M. 2005. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J Trop Ecol 21:549–57.

    Article  Google Scholar 

  • Malhi Y, Aragao L, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACL, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AL, Teixeira LM. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Change Biol 15:1255–74.

    Article  Google Scholar 

  • Marthews TR, Malhi Y, Girardin CAJ, Silva Espejo JE, Aragão LEOC, Metcalfe DB, Rapp JM, Mercado LM, Fisher RA, Galbraith DR, Fisher JB, Salinas-Revilla N, Friend AD, Restrepo-Coupe N, Williams RJ. 2012. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Glob Change Biol 18:2882–98.

    Article  Google Scholar 

  • McMurtrie RE, Comins HN, Kirschbaum MUF, Wang YP. 1992. Modifying existing forest growth models to take account of effects of elevated CO2. Aust J Bot 40:657–77.

    Article  CAS  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M, Kull O, Carswell F, Nobre A, Jarvis PG. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–57.

    Article  Google Scholar 

  • Miller SD, Goulden ML, Menton MC, da Rocha HR, de Freitas HC, e Silva Figueira AM, Dias de Sousa CA. 2004. Biometric and micrometeorologicla measurements of tropical forest carbon balance. Ecol Appl 14(Suppl. 4):114–26.

    Google Scholar 

  • Moser G, Hertel D, Leuschner C. 2007. Altitudinal change in Lai and stand leaf biomass in tropical montane forests: a transect shady in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–35.

    Article  Google Scholar 

  • Raich JW, Russell AE, Vitousek PM. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78:707–21.

    Google Scholar 

  • Robertson AL, Malhi Y, Farfan-Amezquita F, Aragão LEOC, Silva Espejo JE, Robertson MA. 2010. Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16(12):3193–204.

    Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS. 2004. An experimental test of the causes of forest growth decline with stand age. Ecol. Monogr 74(3):393–414.

    Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fownes JH, Mueller-Dombois D. 2000. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol 20:673–81.

    Article  PubMed  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–6.

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C-3 leaves. Plant Cell Environ 30:1035–40.

    Article  CAS  PubMed  Google Scholar 

  • Tanner EVJ, Kapos V, Franco W. 1992. Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86.

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Freskos S, Healey JR, Theobald AM. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol 6:231–8.

    Article  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22.

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB. 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Change Biol 7(2):223–30.

    Google Scholar 

  • van de Weg MJ, Meir P, Grace J, Atkin OK. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol Divers 2:243–54.

    Article  Google Scholar 

  • van de Weg MJ, Meir P, Grace J, Damian Ramos G. 2012. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:23–34.

    Article  PubMed  Google Scholar 

  • Vitousek P, Farrington H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75.

    Article  CAS  Google Scholar 

  • Waide RB, Zimmerman JK, Scatena FN. 1998. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79:31–7.

    Article  Google Scholar 

  • Wang HQ, Hall CAS, Scatena FN, Fetcher N, Wu W. 2003. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico. For Ecol Manage 179:69–94.

    Article  Google Scholar 

  • Williams M, Law BE, Anthoni PM, Unsworth MH. 2001a. Use of a simulation model and ecosystem flux data to examine carbon–water interactions in ponderosa pine. Tree Physiol 21(5):287–98.

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP. 1998. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ 21:953–68.

    Article  Google Scholar 

  • Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ 19:911–27.

    Article  Google Scholar 

  • Williams M, Rastetter EB, Shaver GR, Hobbie JE, Carpino E, Kwiatkowski BL. 2001b. Primary production of an arctic watershed: an uncertainty analysis. Ecol Appl 11:1800–16.

    Article  Google Scholar 

  • Wright JK, Williams M, Starr G, McGee J, Mitchell RJ. 2013. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought. Plant Cell Environ 36:467–83.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD. 1993. Biochemical limitations to carbon assimilation in C3 plants: a retrospective analysis of the A/C i curves from 109 species. J Exp Bot 44:907–20.

    Article  CAS  Google Scholar 

  • Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ. 2009. Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000 m tropical forest altitudinal gradient. Eur J Soil Sci 60:895–906.

    Article  CAS  Google Scholar 

  • Zotz G, Tyree MT, Patino S, Carlton MR. 1998. Hydraulic architecture and water use of selected species from a lower montane forest in Panama. Trees Struct Funct 12:302–9.

    Article  Google Scholar 

Download references

Acknowledgments

This study is a product of the Andes Biodiversity and Ecosystems Research Group. This study was financed by a grant from the Andes-Amazon program of the Gordon and Betty Moore Foundation, with research grants from the UK Natural Environment Research Council, a Royal Geographical Society (with IBG) geographical fieldwork grant and a scholarship from the School of Geosciences from the University of Edinburgh. We also thank the Asociación para la Conservación de la Cuenca Amazónica (ACCA) for hosting us at the Wayqecha field station and INRENA for permitting us to explore the Peruvian tropical forest. We thank Rob St John for indispensible help with the sap flow system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Janet van de Weg.

Additional information

Author’s Contribution

PM, JG, and MvdW conceived of the study, MvdW, CG, and JS-E conducted the fieldwork, MvdW and CG analyzed the field work data, JS-E and YM provided additional field data, MW contributed the model, MvdW analyzed the model outcomes and all authors contributed to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Weg, M.J., Meir, P., Williams, M. et al. Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest. Ecosystems 17, 751–764 (2014). https://doi.org/10.1007/s10021-014-9758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9758-4

Keywords

Navigation