Skip to main content

Advertisement

Log in

Increasing Soil Nutrient Loads of European Semi-natural Grasslands Strongly Alter Plant Functional Diversity Independently of Species Loss

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Asman WAH, van Jaarsveld JA. 2002. A variable-resolution transport model applied for NHx in Europe. Atmos Environ 26A:445–64.

    Google Scholar 

  • Bekker R, Bakker J, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH. 1998. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–42.

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Sinderby S, Davidson E, Dentener F, Emmet B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.

    Article  CAS  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–87.

    Article  Google Scholar 

  • Caporn SJM, Ashenden TW, Lee JA. 2000. The effect of exposure to NO2 and SO2 on frost hardiness in Calluna vulgaris. Environ Exp Bot 43:111–19.

    Article  CAS  Google Scholar 

  • Casanoves F, Pla L, Di Rienzo JA, Díaz S. 2011. FDiversity: a software package for the integrated analysis of functional diversity. Method Ecol Evol 2:233–7.

    Article  Google Scholar 

  • Ceulemans T, Merckx R, Hens M, Honnay O. 2011. A trait based analysis of the role of phosphorus vs nitrogen enrichment in plant species loss across North-west European grasslands. J Appl Ecol 48:1145–63.

    Article  Google Scholar 

  • Ceulemans T, Merckx R, Hens M, Honnay O. 2013. Plant species loss from European semi-natural grasslands following nutrient enrichment: is it nitrogen or is it phosphorus? Glob Ecol Biogeogr 22:73–82.

    Article  Google Scholar 

  • Clark CM, Tilman D. 2008. Loss of plant species after chronic low level nitrogen deposition to Prairie grasslands. Nature 451:712–15.

    Article  CAS  PubMed  Google Scholar 

  • Cleland EE, Harpole WS. 2010. Nitrogen enrichment and plant communities. Ann NY Acad Sci 1195:46–61.

    Article  CAS  PubMed  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408.

    Article  Google Scholar 

  • De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K. 2011. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–16.

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson MT. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–9.

    Article  PubMed  Google Scholar 

  • Diekmann M, Falkengren-Grerup U. 2002. Prediction of species response to atmospheric nitrogen deposition by means of ecological measures and life history traits. J Ecol 90:108–20.

    Article  Google Scholar 

  • Dorrough J, Scroggie MP. 2008. Plant responses to agricultural intensification. J Appl Ecol 45:1274–83.

    Article  Google Scholar 

  • Duprè C, Stevens CJ, Ranke T, Bleekers A, Peppler Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M. 2010. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Chang Biol 16:344–57.

    Article  Google Scholar 

  • European Commission, DG Environment. 2007. Interpretation manual of European Union Habitats-EUR27. Brussels: European Commission.

    Google Scholar 

  • Fitter AH, Peat HJ. 1994. The ecological flora database. J Ecol 82:415–25.

    Article  Google Scholar 

  • Fonseca CR, McC Overton J, Collins B, Westoby M. 2000. Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–77.

    Article  Google Scholar 

  • Fréville H, McConway K, Dodd M, Silvertown J. 2007. Prediction of extinction in plants: interaction of extrinsic threats and life history traits. Ecology 88:2662–72.

    Article  PubMed  Google Scholar 

  • Galloway JN, Towsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–92.

    Article  CAS  PubMed  Google Scholar 

  • García-Palacios P, Maestre FT, Milla R. 2013. Community-aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning. Plant Soil 364:119–29.

    Article  Google Scholar 

  • Gauger T, Anshelm F, Schuster H, Erisman J, Vermeulen AT, Draaisjers GPJ. 2002. Mapping of ecosystems specific long-term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and critical levels. Germany: Institut Fur Navigation, University of Stuttgart. p 315.

    Google Scholar 

  • Gilbert J, Gowing D, Wallace H. 2009. Available soil phosphorus in semi-natural grasslands: assessment methods and community tolerances. Biol Conserv 142:1074–83.

    Article  Google Scholar 

  • Gower JC. 1971. A general coefficient of similarity and some of its properties. Biometrics 27:857–71.

    Article  Google Scholar 

  • Güsewell S. 2004. N:P rations in terrestrial plants: variation and functional significance. New Phytol 164:243–66.

    Article  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–8.

    Article  CAS  PubMed  Google Scholar 

  • Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P. 2013. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:454–60.

    Article  PubMed  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Allen EB. 2008. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89:2868–78.

    Article  PubMed  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–74.

    Article  Google Scholar 

  • Kleyer M, Dray S, de Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S. 2012. Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–21.

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR-Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde, 38. Bundesamt für Naturschutz, Bonn.

  • Kremen C. 2005. Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–79.

    Article  PubMed  Google Scholar 

  • Kühner A, Kleyer M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. J Veg Sci 19:681–92.

    Article  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD. 2010. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31.

    Article  CAS  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–8.

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L. 1998. Numerical ecology. Second english edition. Amsterdam: Elsevier. p 990.

    Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valenci E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitán J, Gatica GM, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes DA, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga JP, Wang D, Zaady E. 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ. 2010. Nitrogen deposition causes widespread loss of species richness in British habitats. Glob Chang Biol 16:671–9.

    Article  Google Scholar 

  • McCann KS. 2000. The diversity-stability debate. Nature 405:228–33.

    Article  CAS  PubMed  Google Scholar 

  • McCune B, Mefford M (1999) PC-ORD. Multivariate analysis of ecological data, version 4. Gleneden beach (Oregon): MjM Software Design.

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–76.

    Article  Google Scholar 

  • NEGTAP. 2001. Transboundary air pollution: acidification, eutrophication and ground-level ozone in the UK. Edinburgh (UK): CEH.

    Google Scholar 

  • Newman EI. 1995. Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–26.

    Article  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P- and K-limited wetlands. Ecology 84:2191–9.

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture, Circular 939.

  • Ordoñez JC, van Bodegom PM, Witte JM, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–49.

    Article  Google Scholar 

  • Pavoine S, Ollier S, Pontier D. 2005. Measuring diversity from dissimilarities with Rao’s quadratic entropy: are any dissimilarities suitable? Theor Popul Biol 67:231–9.

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Sardans J, Rivas-Ubach IA, Janssens A. 2012. The human-induced imbalance between C, N and P in Earth’s life system. Glob Chang Biol 18:3–6.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–11.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecol Lett 9:741–58.

    Article  PubMed  Google Scholar 

  • Pierik M, van Ruijven J, Bezemer MT, Geerts RH, Berendse F. 2011. Recovery of plant species richness during long-term fertilization of a species-rich grassland. Ecology 92:1393–8.

    Article  PubMed  Google Scholar 

  • Pieterse G, Bleeker A, Vermeulen AT, Wu Y, Erisman W. 2007. High resolution modeling of atmosphere–canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests. Tellus 59B:412–24.

    Article  CAS  Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ. 2005. Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–59.

    Article  Google Scholar 

  • Rao CR. 1964. The use and interpretation of principal correspondence analysis in applied research. Sankhya 26:329–59.

    Google Scholar 

  • Rao CR. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology 21:24–43.

    Article  Google Scholar 

  • Robertson GP, Coleman DC, Bledsoe CS, Sollins P., editors. 1999. Standard soil methods in long term ecological research. New York: Oxford University Press. 462p.

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–9.

    Article  CAS  PubMed  Google Scholar 

  • Stevens CJ, Thompson K, Grime PJ, Long CJ, Gowing DJG. 2010. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Functional Ecology 24:478–84.

    Article  Google Scholar 

  • Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Diekmann M, Alard D, Bobbink R, Corcket E, Mountford OJ, Vandvik V., Aarrestad PA, Muller S, Dise NB. 2011. Grassland species composition and biogeochemistry in 153 sites along environmental gradients in Europe. Ecology 92: 1544-1544.

    Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S. 2005. Functional and abundance based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America 102:4387–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theodose TA, Bowman WD. 1997. Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78:1861–72.

    Article  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2. New Phytologist 164:347–55.

    Article  Google Scholar 

  • van den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, Roelofs JGM. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166:551–64.

    Article  PubMed  Google Scholar 

  • Van Landuyt W, Vanhecke L, Hoste I, Hendrickx F, Bauwens D. 2008. Changes in the distribution area of vascular plants in Flanders (northern Belgium): eutrophication as a major driving force. Biodiversity Conservation 17:3045–60.

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–301.

    Article  PubMed  Google Scholar 

  • VMM. 2010. Acidic rain in Flanders, deposition monitoring network acidification 2009 (in Dutch). Belgium: Erembodegem.

    Google Scholar 

  • Ward JH Jr. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58:236–44.

    Article  Google Scholar 

  • Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F. 2005. Endangered plants persist under phosphorus limitation. Nature 437:547–50.

    Article  CAS  PubMed  Google Scholar 

  • Willby NJ, Pulford ID, Flowers TH. 2001. Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytologist 152:463–81.

    Article  CAS  Google Scholar 

  • Xia J, Wan S. 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179:428–39.

    Article  CAS  PubMed  Google Scholar 

  • Zar JH. 1998. Biostatistical Analysis. New Jersey, USA: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

This paper was written when K.H. held a Grant from the Flemish Fund for Scientific Research (FWO). We would like to thank local managers who allowed access and sampling in the different nature reserves and all authors that granted access to the large European dataset of Nardus grasslands (Ecological Archives E092-128). We thank David Celis of VMM (Vlaamse Milieumaatschappij) for modelling the N deposition levels for grasslands located in the northern part of Belgium. We are also grateful for the field and laboratory assistance of Tijl Vereenooghe, Kris Malefason and Kasper Van Acker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Helsen.

Additional information

Author Contribution. KH conceived study, analyzed data, wrote manuscript; TC and CJS collected data; OH conceived study and contributed new methods; all authors discussed the results and commented on and revised the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helsen, K., Ceulemans, T., Stevens, C.J. et al. Increasing Soil Nutrient Loads of European Semi-natural Grasslands Strongly Alter Plant Functional Diversity Independently of Species Loss. Ecosystems 17, 169–181 (2014). https://doi.org/10.1007/s10021-013-9714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9714-8

Keywords:

Navigation