Skip to main content

Advertisement

Log in

Food Web Assembly at the Landscape Scale: Using Stable Isotopes to Reveal Changes in Trophic Structure During Succession

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Food webs are increasingly evaluated at the landscape scale, accounting for spatial interactions involving different nutrient and energy channels. Also, while long viewed as static, food webs are increasingly seen as dynamic entities that assemble during vegetation succession. The next necessary step is, therefore, to link nutrient flows between ecosystems to local food web assembly processes. In this study, we used a 100-year salt marsh succession in which we investigated the long-term changes in food web organization, especially focusing on the balance between internal versus external nutrient sources. We found that during food web assembly, the importance of internal (terrestrial) nutrient cycling increases at the expense of external (marine) inputs. This change from external to internal nutrient cycling is associated with strong shifts in the basis of energy channels within the food web. In early succession, detritivores are mostly fuelled by marine inputs whereas in later succession they thrive on locally produced plant litter, with consequences for their carnivores. We conclude that this 100 years of food web assembly proceeds by gradual decoupling of terrestrial nutrient cycling from the marine environment, and by associated rearrangements in the herbivore and detritivore energy channels. Food web assembly thus interacts with nutrient and energy flows across ecosystem boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bakker J, de Leeuw J, Dijkema K, Leendertse P, Prins H, Rozema J. 1993. Salt marshes along the coast of The Netherlands. Hydrobiologia 265:73–95.

    Article  Google Scholar 

  • Berg MP, Bengtsson J. 2007. Temporal and spatial variability in soil food web structure. Oikos 116:1789–804.

    Article  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–19.

    Article  Google Scholar 

  • Cebrian J, Lartigue J. 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–59.

    Article  Google Scholar 

  • Clements FE. 1916. Plant succession: an analysis of the development of vegetation. Washington: Carnegie Institute of Washington.

    Book  Google Scholar 

  • Cohen JE, Briand F. 1984. Trophic links of community food webs. Proc Natl Acad Sci USA 81:4105–9.

    Article  PubMed  CAS  Google Scholar 

  • Cohen JE, Newman CM. 1985. A stochastic theory of community food webs. 1. Models and aggregated data. Proc R Soc Lond B 224:421–48.

    Article  Google Scholar 

  • Cohen JE, Jonsson T, Carpenter SR. 2003. Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci USA 100:1781–6.

    Article  PubMed  CAS  Google Scholar 

  • Colombini I, Brilli M, Fallaci M, Gagnarli E, Chelazzi L. 2011. Food webs of a sandy beach macroinvertebrate community using stable isotopes analysis. Acta Oecol 37:422–32.

    Article  Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR. 2003. Aerial dispersal of invertebrates over a high-Arctic glacier foreland: Midtre Lovenbreen, Svalbard. Polar Biol 26:530–7.

    Article  Google Scholar 

  • De Jager TD. 2006. Vegetatiekartering 2004 op basis van false colour-luchtfoto’s 1:10.000. Rijkswaterstaat, AGI, Delft.

  • De Leeuw J, De Munck W, Olff H, Bakker JP. 1993. Does zonation reflect the succession of salt-marsh vegetation? A comparison of an estuarine and a coastal bar island marsh in the Netherlands. Acta Bot Neerl 42:435–45.

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–67.

    Article  Google Scholar 

  • Eaton JW, Moss B. 1966. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr 11:584–95.

    Article  Google Scholar 

  • Edwards JS, Sugg P. 1993. Arthropod fallout as a resource in the recolonization of Mount St. Helens. Ecology 74:954–8.

    Article  Google Scholar 

  • Hobson KA, Welch HE. 1992. Determination of trophic relationships within a high Arctic marine food web using delta-C-13 and delta-N-15 analysis. Mar Ecol Prog Ser 84:9–18.

    Article  CAS  Google Scholar 

  • Hodkinson ID, Coulson SJ, Harrison J, Webb NR. 2001. What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic—some counter-intuitive ideas on community assembly. Oikos 95:349–52.

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR. 2004. Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–68.

    Article  Google Scholar 

  • Huisman J, Olff H. 1998. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol Lett 1:25–9.

    Article  Google Scholar 

  • Irmler U, Heydemann B. 1986. Die Ökologische Problematik der Beweidung von Salzwiesen am Beispiel der Leybucht. Landesverwaltungsamt, Fachbehörde für Naturschutz, Hannover: Nieders.

    Google Scholar 

  • Kaufmann R. 2001. Invertebrate Succession on an Alpine Glacier Foreland. Ecology 82:2261–78.

    Article  Google Scholar 

  • Kuijper DPJ, Bakker JP. 2005. Top-down control of small herbivores on salt-marsh vegetation along a productivity gradient. Ecology 86:914–23.

    Article  Google Scholar 

  • Kuijper DPJ, Bakker JP, Lubke R. 2003. Large-scale effects of a small herbivore on salt-marsh vegetation succession—a comparative study on three Wadden Sea islands. J Coast Conserv 9:179–88.

    Article  Google Scholar 

  • Kuijper DPJ, Nijhoff DJ, Bakker JP. 2004. Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia 141:452–9.

    Article  PubMed  CAS  Google Scholar 

  • Maron JL, Estes JA, Croll DA, Danner EM, Elmendorf SC, Buckelew SL. 2006. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol Monogr 76:3–24.

    Article  Google Scholar 

  • Miles J, Walton DWH. 1993. Primary succession on land. Oxford: Blackwell. p 390.

    Google Scholar 

  • Moore PG, Francis CH. 1986. Environmental tolerances of the beach-hopper Orchestia gammarellus (Pallas) (Crustacea:Amphipoda). Mar Environ Res 19:115-29.

    Article  CAS  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH. 2004. Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600.

    Article  Google Scholar 

  • Neutel AM, Heesterbeek JAP, Van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, de Ruiter PC. 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–611.

    Article  PubMed  CAS  Google Scholar 

  • Olff H, de Leeuw J, Bakker JP, Platerink RJ, Van Wijnen HJ, De Munck W. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol 85:799–814.

    Article  Google Scholar 

  • Pimm SL. 1982. Food webs. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–6.

    Article  PubMed  CAS  Google Scholar 

  • Polis GA, Strong DR. 1996. Food web complexity and community dynamics. Am Nat 147:813–46.

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18.

    Article  Google Scholar 

  • Rogers DI. 2003. High-tide roost choice by coastal waders. Wader Study Group Bull 100:73–9.

    Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–9.

    Article  PubMed  CAS  Google Scholar 

  • Rooney N, McCann KS, Moore JC. 2008. A landscape theory for food web architecture. Ecol Lett 11:867–81.

    Article  PubMed  Google Scholar 

  • Schrama MJJ, Olff H, Berg MP. 2012. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology 93:2353–64.

    Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc Lond B 273:1–9.

    Article  Google Scholar 

  • Sugg PM, Edwards JS. 1998. Pioneer aeolian community development on pyroclastic flows after the eruption of Mount St. Helens, Washington, USA. Arct Alp Res 30:400–7.

    Article  Google Scholar 

  • Temmerman S, Bouma TJ, Govers G, Wang ZB, De Vries MB, Herman PMJ. 2005. Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh. J Geophys Res 110:F04019 (18 pp).

    Google Scholar 

  • Van de Koppel J, Huisman J, Van der Wal R, Olff H. 1996. Patterns of herbivory along a productivity gradient: an empirical and theoretical investigation. Ecology 77:736–45.

    Article  Google Scholar 

  • Van der Wal R, Van Lieshout S, Bos D, Drent RH. 2000. Are spring staging brent geese evicted by vegetation succession? Ecography 23:60–9.

    Article  Google Scholar 

  • Van Wijnen HJ, Bakker JP. 1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. J Ecol 87:265–72.

    Article  Google Scholar 

  • van Wijnen H, Bakker J, de Vries Y. 1997. Twenty years of salt marsh succession on a Dutch coastal barrier island. J Coast Conserv 3:9–18.

    Article  Google Scholar 

  • Winemiller KO. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr 60:331–67.

    Article  Google Scholar 

  • Winemiller KO, Polis GA. 1996. Food webs: integration of patterns and dynamics. New York: Chapman and Hall.

    Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH. 2005. Body size in ecological networks. Trends Ecol Evol 20:402–9.

    Article  PubMed  Google Scholar 

  • Zwarts L, Blomert AM. 1996. Daily metabolized energy consumption of Oystercatchers Haematopus ostralegus feeding on larvae of the crane fly Tipula paludosa. Ardea 84A:221–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Schrama.

Additional information

Author Contributions

MS, MPB, and HO developed the ideas for this study. JJ and MS conducted the research and analyzed the data. MS wrote the first draft, which was then edited by MPB and HO.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrama, M., Jouta, J., Berg, M.P. et al. Food Web Assembly at the Landscape Scale: Using Stable Isotopes to Reveal Changes in Trophic Structure During Succession. Ecosystems 16, 627–638 (2013). https://doi.org/10.1007/s10021-013-9636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9636-5

Keywords

Navigation