Skip to main content
Log in

Oligopeptides Represent a Preferred Source of Organic N Uptake: A Global Phenomenon?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Over the past 20 years, our understanding of soil nitrogen (N) cycling has changed with evidence that amino acids are major substrates for both soil microorganisms and plants. However, the recent discovery that plants and microorganisms can directly utilize small peptides in soil needs to be evaluated for its ecological significance, because peptides are released earlier in protein decomposition and thus would provide significant competitive advantage to any organism that can use them directly. We tested whether soil microorganisms took up peptides faster than amino acids across a broad range of ecosystems. We show that l-enantiomeric-peptidic-N is taken up significantly faster than the equivalent monomer, and that this is universal across soils from different ecosystems, with distinct microbial communities. Peptides may have an unrecognized, global, importance in the terrestrial N cycle, providing N to soil microorganisms at an earlier stage of decomposition than previously acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amelung W, Zhang X, Flach KW. 2006. Amino acids in grassland soils: climatic effects on concentrations and chirality. Geoderma 130:207–17.

    Article  CAS  Google Scholar 

  • Bajwa R, Read DJ. 1985. The biology of mycorrhizal in the Ericaceae. IX. Peptides as nitrogen sources for the Ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101:459–67.

    Article  CAS  Google Scholar 

  • Bardgett RD, McAlister E. 1999. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–90.

    Article  Google Scholar 

  • Benjdia M, Rikirsch E, Müller T, Morel M, Corratagé C, Zimmermann S, Chalot M, Frommer WB, Wipf D. 2006. Peptide uptake in the ectomychorrizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol 170:401–10.

    Article  PubMed  CAS  Google Scholar 

  • Boddy EL, Hill PW, Farrar JF, Jones DL. 2007. Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39:827–35.

    Article  Google Scholar 

  • Broderick GA, Wallace RJ, McKain N. 1988. Uptake of small neutral peptides by mixed rumen microorganisms in vitro. J Sci Food Agric 42:109–18.

    Article  CAS  Google Scholar 

  • Dahlgren RA. 2005. Geologic nitrogen as a source of soil acidity. Soil Sci Plant Nutr 51:719–23.

    Article  CAS  Google Scholar 

  • Farrar J, Boddy E, Hill PW, Jones DL. 2012. Discrete functional pools of soil organic matter in a UK grassland soil are differentially affected by temperature and priming. Soil Biol Biochem 49:52–60.

    Article  CAS  Google Scholar 

  • Farrell M, Hill PW, Farrar J, Bardgett RD, Jones DL. 2011a. Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient. Soil Biol Biochem 43:835–44.

    Article  CAS  Google Scholar 

  • Farrell M, Hill PW, Wanniarachchi SD, Farrar J, Bardgett RD, Jones DL. 2011b. Rapid peptide metabolism: a major component of soil nitrogen cycling? Glob Biogeochem Cycles 25:GB3014.

    Article  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecol Lett 12:1238–49.

    Article  PubMed  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analyses. Soil Biol Biochem 25:723–30.

    Article  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B. 2010. Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–67.

    Article  CAS  Google Scholar 

  • Glanville H, Rousk J, Golyshin P, Jones DL. 2012. Mineralization of low molecular weight carbon substrates in soil solution under laboratory and field conditions. Soil Biol Biochem 48:88–95.

    Article  CAS  Google Scholar 

  • Gonzales T, Robert-Baudouy J. 1996. Bacterial aminopeptidases: Properties and functions. FEMS Microbiol Rev 18:319–44. doi:10.1111/j.1574-6976.1996.tb00247.x.

  • Gördes D, Kolukisaoglu Ü, Thurow K. 2011. Uptake and conversion of d-amino acids in Arabidopsis thaliana. Amino Acids 40:553–63.

    Article  PubMed  Google Scholar 

  • Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL. 2011a. Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Change 1:50–3.

    Article  CAS  Google Scholar 

  • Hill PW, Farrell M, Jones DL. 2012. Bigger may be better in soil N cycling: does rapid acquisition of small l-peptides by soil microbes dominate fluxes of protein-derived N in soil? Soil Biol Biochem 48:106–12.

    Article  CAS  Google Scholar 

  • Hill PW, Farrell M, Roberts P, Farrar J, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL. 2011b. Soil- and enantiomer-specific metabolism of amino acids and peptides by Antarctic soil microorganisms. Soil Biol Biochem 43:2410–16.

    Article  CAS  Google Scholar 

  • Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL. 2011c. Acquisition and assimilation of nitrogen as peptide-bound and d-enantiomers of amino acids by sterile wheat. PLoS One 6:e19220.

    Article  PubMed  CAS  Google Scholar 

  • Hofmockel KS, Fierer N, Colman BP, Jackson RB. 2010. Amino acid abundance and proteolytic potential in North American soils. Oecologia 163:1069–78.

    Article  PubMed  Google Scholar 

  • Hopkins DW, Ferguson KE. 1994. Substrate induced respiration in soil amended with d- and l-isomers of amino acids. Appl Soil Ecol 1:75–81.

    Article  Google Scholar 

  • Hopkins DW, Isabella BL, Scott SE. 1994. Relationship between microbial biomass and substrate induced respiration in soils amended with d- and l-isomers of amino acids. Soil Biol Biochem 26:1623–7.

    Article  CAS  Google Scholar 

  • Isnor RA, Warman PR. 1990. Amino acid composition of soil peptides chromatographed by high performance liquid chromatography on C18 and C8 columns. Biol Fertil Soil 10:213–17.

    CAS  Google Scholar 

  • Jämtgard S, Näsholm T, Huss-Danell K. 2010. Nitrogen compounds in soil solutions of agricultural land. Soil Biol Biochem 42:2325–30.

    Article  Google Scholar 

  • Jan MT, Roberts P, Tonheim SK, Jones DL. 2009. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol Biochem 41:2272–82.

    Article  CAS  Google Scholar 

  • Jennings DH. 1995. The physiology of fungal nutrition. Cambridge: Cambridge University Press.

  • Jones DL, Kemmitt SJ, Wright D, Cuttle SP, Bol R, Edwards AC. 2005a. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biol Biochem 37:1267–75.

    Article  CAS  Google Scholar 

  • Jones DL, Kielland K, Sinclair FL, Dahlgren RA, Newsham KK, Farrar JF, Murphy DV. 2009. Soil organic nitrogen mineralization across a global latitudinal gradient. Glob Biogeochem Cycles 23:GB1016.

    Article  Google Scholar 

  • Jones DL, Murphy DV. 2007. Microbial response time to sugar and amino acid additions to soil. Soil Biol Biochem 39:2178–82.

    Article  CAS  Google Scholar 

  • Jones DL, Owen AG, Farrar JF. 2002. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34:1893–902.

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–9.

    Article  CAS  Google Scholar 

  • Jones V, Collins MJ, Penkman KEH, Jaffé R, Wolff GA. 2005b. An assessment of the microbial contribution to aquatic dissolved organic nitrogen using amino acid enantiomeric ratios. Org Geochem 36:1099–107.

    Article  CAS  Google Scholar 

  • Kielland K, McFarland JW, Ruess RW, Olson K. 2007. Rapid organic nitrogen cycling in taiga forest ecosystems. Ecosystems 10:360–8.

    Article  CAS  Google Scholar 

  • Kirchman D, Hodson R. 1984. Inhibition of amino acid uptake by bacterial populations in natural waters: implications for the regulation of amino acid transport and incorporation. Appl Environ Microbiol 47:624–31.

    PubMed  CAS  Google Scholar 

  • Kögel-Knaber I. 2006. Chemical structure of organic N and organic P in soils. In: Nannipieri P, Smalla K, Eds. Nucleic acids and proteins in soils. Berlin: Springer. p 23–48.

    Chapter  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer MS, Tegeder M, Rentsch D. 2008. AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–69.

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Jones DL. 2006. Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biol Biochem 38:851–60.

    Article  CAS  Google Scholar 

  • Leckie SE. 2005. Methods of microbial community profiling and their application to forest soils. For Ecol Manag 220:88–106.

    Article  Google Scholar 

  • Matthews DM, Payne JW. 1980. Transmembrane transport of small peptides. Curr Top Membr Trans 14:331–425.

    Article  CAS  Google Scholar 

  • Miller CG. 1975. Peptidases and proteases of Escherichia coli and Salmonella typhimurium. Annu Rev Microbiol 29:485–504.

    Article  PubMed  CAS  Google Scholar 

  • Milligan DL, Tran SL, Strych U, Cook GM, Krause KL. 2007. The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of d-alanine. J Bacteriol 189:8381–6.

    Article  PubMed  CAS  Google Scholar 

  • Mulholland MR, Lee C. 2009. Peptide hydrolysis and the uptake of dipeptides by phytoplankton. Limnol Oceanogr 54:856–68.

    Article  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914–16.

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytol 182:31–48.

    Article  PubMed  Google Scholar 

  • Nordin A, Hogberg P, Näsholm T. 2001. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–32.

    Article  Google Scholar 

  • Payne JW, Ed. 1980. Microorganisms and nitrogen sources. Chichester: Wiley.

    Google Scholar 

  • Pittman KA, Bryant MP. 1964. Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J Bacteriol 88:401–10.

    Google Scholar 

  • Rasmussen C, Matsuyama N, Dahlgren RA, Southard RJ, Brauer N. 2007. Soil genesis and mineral transformations across an environmental gradient on andesitic lahar. Soil Sci Soc Am J 71:225–37.

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Soper FM, Paungfoo-Lonhienne C, Brackin R, Rentsch D, Schmidt S, Robinson N. 2011. Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Funct Plant Biol 38:788–96.

    Article  CAS  Google Scholar 

  • Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–8.

    Article  CAS  Google Scholar 

  • Van Cleve K, Viereck LA, Marion GM. 1993. Introduction and overview of a study dealing with the role of salt-affected soils in primary succession on the Tanana River floodplain, interior Alaska. Can J For Res 23:879–88.

    Article  Google Scholar 

  • van der Heijen MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.

    Article  Google Scholar 

  • Viereck LA, Dyrness CT, Foote MJ. 1993. An overview of the vegetation and soils of the floodplain ecosystems of the Tanana River, interior Alaska. Can J For Res 23:889–98.

    Article  Google Scholar 

  • Voroney RP, Brookes PC, Beyaert RP. 2008. Soil microbial biomass C, N, P, and S. In: Carter MR, Gregorich EG, Eds. Soil sampling and methods of analysis. 2nd edn. Boca Raton: CRC Press. p 637–52.

    Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson M-C. 1998. The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–26.

    Article  Google Scholar 

  • Wischern F, Lobe I, Amelung W, Müller T, Joergensen RG, Buerkert A. 2004. Changes in amino acid enantiomers and microbial performance in soils from a subtropical mountain oasis in Oman abandoned for different periods. Biol Fertil Soil 39:398–406.

    Article  Google Scholar 

  • Yu Z, Dahlgren RA, Northup RR. 1999. Evolution of soil properties and plant communities along an extreme edaphic gradient. Eur J Soil Biol 35:31–8.

    Article  CAS  Google Scholar 

  • Yu Z, Zhang Q, Kraus TEC, Dahlgren RA, Anastasio C, Zasoski RJ. 2002. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61:173–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the UK Natural Environment Research Council. Thanks also to Mr Jonathan Roberts and Mr Gordon Turner of Bangor University for their assistance in the laboratory; and to Dr David Lucy of Lancaster University and Dr Lynne Macdonald of CSIRO for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Farrell.

Additional information

Author contributions

M.F., P.W.H. and D.L.J. conceived the investigation. All authors were involved in sample collection. M.F. and P.W.H carried out the experiments and data analysis. All authors discussed results and contributed to the preparation of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrell, M., Hill, P.W., Farrar, J. et al. Oligopeptides Represent a Preferred Source of Organic N Uptake: A Global Phenomenon?. Ecosystems 16, 133–145 (2013). https://doi.org/10.1007/s10021-012-9601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9601-8

Keywords

Navigation