Skip to main content

Advertisement

Log in

Predicting Novel Riparian Ecosystems in a Changing Climate

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel ecosystems in future climates. Focusing on riparian ecosystems, we use qualitative process models to predict likely abiotic and biotic changes in four case study systems: tropical coastal floodplains, temperate streams, high mountain streams and urban riparian zones. We concentrate on functional groups rather than individual species and consider dispersal constraints and the capacity for genetic adaptation. Our scenarios suggest that climatic changes will reduce indigenous diversity, facilitate non-indigenous invasion (especially C4 graminoids), increase fragmentation and result in simplified and less distinctive riparian ecosystems. Compared to models based on biota-environment correlations, process models built on mechanistic understanding (like Bayesian belief networks) are more likely to remain valid under novel climatic conditions. We posit that predictions based on species’ functional traits will facilitate regional comparisons and can highlight effects of climate change on ecosystem structure and function. Ecosystems that have experienced similar modification to that expected under climate change (for example, altered flow regimes of regulated rivers) can be used to help inform and evaluate predictions. By manipulating attributes of these system models (for example, magnitude of climatic changes or adaptation strategies used), implications of various scenarios can be assessed and optimal management strategies identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Australian Bureau of Statistics. 2011. Regional population growth, Australia, 2010–11. http://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/3218.0Main+Features12010-11?OpenDocument. Last accessed 23/4/2012.

  • Bartolo R, Wasson R, Valentine E, Cleland S, Bayliss P, Winderlich S. 2008. Climate change—the status of climate change research in the Kakadu landscape context. In: Kakadu National Park Landscape Symposia Series 2007–2009. Symposium 1: Landscape Change Overview. Darwin. pp 84–96.

  • Bayliss P, Yeomans KM. 1990. Seasonal distribution and abundance of magpie geese, Anseranas semipalmata in the Northern Territory, and their relationship to habitat, 1983–86. Aust Wildl Res 17:15–38.

    Article  Google Scholar 

  • BMT WBM. 2010. Kakadu: vulnerability to climate change impacts. Canberra: Department of Climate Change and Energy Efficiency.

    Google Scholar 

  • Bolton GC. 1972. A fine country to starve in. Perth: University of Western Australia Press. 278 pp.

    Google Scholar 

  • Bunn SE, Davies PM. 1990. Why is the stream fauna of south-western Australia so impoverished? Hydrobiologia 194:169–76.

    Article  Google Scholar 

  • Bunn SE, Davies PM. 1992. Community structure of the macroinvertebrate fauna and water chemistry of a salinised river system in south-western Australia. Hydrobiologia 248:143–60.

    Article  CAS  Google Scholar 

  • Bunn SE, Davies PM, Kellaway D. 1997. Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Mar Freshw Res 48:173–9.

    Article  CAS  Google Scholar 

  • Bunn SE, Davies PM, Mosisch TD. 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw Biol 41:333–45.

    Article  Google Scholar 

  • Canning-Clode J, Fowler AE, Byers JE, Carlton JT, Ruiz GM. 2011. ‘Caribbean Creep’ chills out: climate change and marine invasive species. PLoS One 6:e29657.

    Article  CAS  PubMed  Google Scholar 

  • Catford JA, Downes BJ, Gippel CJ, Vesk PA. 2011. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J Appl Ecol 48:432–42.

    Article  Google Scholar 

  • Catford JA, Daehler CC, Murphy HT, Sheppard AW, Hardesty BD, Westcott DA, Rejmánek M, Bellingham PJ, Pergl J, Horvitz CC, Hulme PE. 2012. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspect Plant Ecol Evol Syst 14:231–41.

    Google Scholar 

  • Chambers LE, Hughes L, Weston MA. 2005. Climate change and its effect on Australia’s avifauna. Emu 105:1–20.

    Google Scholar 

  • Cleugh H, Stafford Smith M, Battaglia M, Graham P. 2011. Climate change: science and solutions for Australia. Collingwood: CSIRO Publishing.

    Google Scholar 

  • Cobb SM, Saynor MJ, Eliot M, Eliot I, Hall R. 2007. Saltwater intrusion and mangrove encroachment of coastal wetlands in the Alligator Rivers Region, Northern Territory, Australia. Darwin: Environmental Research Institute of the Supervising Scientist.

    Google Scholar 

  • Costin AB. 1954. Ecosystems of the Monaro region of NSW, with special reference to soil erosion. Sydney: Government Printer.

    Google Scholar 

  • CSIRO, Bureau of Meteorology. 2007. Climate change in Australia. Canberra: Department of Climate Change and Energy Efficiency http://www.climatechangeinaustralia.gov.au/technical_report.php.

  • Davey CM, Chamberlain DE, Newson SE, Noble DG, Johnston A. 2012. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob Ecol Biogeogr 21:568–78.

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–31.

    Article  PubMed  Google Scholar 

  • Davies PM. 2010. Climate change implications for river restoration in global biodiversity hotspots. Restor Ecol 18:261–8.

    Article  Google Scholar 

  • DECCW. 2010. NSW climate impact profile. The impacts of climate change on the biophysical environment of New South Wales. Sydney: Department of Environment, Climate Change and Water NSW.

  • De Deckker P. 1986. What happened to the Australian aquatic biota 18,000 years ago? In: De Deckker P, Williams WD, Eds. Limnology in Australia. Melbourne: CSIRO Publishing. p 487–96.

    Chapter  Google Scholar 

  • Delaney R, Fukuda Y, Saalfeld K. 2009. Management program for the Magpie Goose (Anseranas semipalmata) in the Northern Territory of Australia, 2009–2014. Darwin: Northern Territory Department of Natural Resources, Environment, The Arts and Sport.

    Google Scholar 

  • Douglas MM, Bunn SE, Davies PM. 2005. River and wetland food webs in Australia’s wet–dry tropics: general principles and implications for management. Mar Freshw Res 56:329–42.

    Article  Google Scholar 

  • Douglas MM, O’Connor RA. 2003. Effects of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain. Freshw Biol 48:962–71.

    Article  Google Scholar 

  • Douglas MM, O’Connor RA. 2004. Weed invasion changes fuel characteristics: Para Grass (Urochloa mutica (Forssk.) T.Q. Nguyen) on a tropical floodplain. Ecol Manag Restor 5:143–5.

    Article  Google Scholar 

  • Dukes JS, Chiariello NR, Loarie SR, Field CB. 2011. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol Appl 21:1887–94.

    Article  PubMed  Google Scholar 

  • Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods Ecol Evol 1:330–42.

    Article  Google Scholar 

  • Ferrier S, Guisan A. 2006. Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404.

    Article  Google Scholar 

  • Finlayson C, Lowry J, Bellio M, Nou S, Pidgeon R, Walden D, Humphrey C, Fox G. 2006. Biodiversity of the wetlands of the Kakadu Region, northern Australia. Aquatic Sciences-Research Across Boundaries 68:374–99.

    Article  Google Scholar 

  • Fukami T, Martijn Bezemer T, Mortimer SR, van der Putten WH. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–90.

    Article  Google Scholar 

  • Good R, Wright G, Whinam J, Hope G. 2010. Restoration of mires of the Australian Alps following the 2003 wildfires. In: Haberle S, Stevenson J, Prebble M, Eds. Altered ecologies: fire, climate and human influences on terrestrial landscapes. Canberra: ANU Press. p 353–62.

    Google Scholar 

  • Green K, Pickering CM. 2009. The decline of snowpatches in the Snowy Mountains of Australia: importance of climate warming, variable snow and wind. Arct Antarct Alp Res 41:212–18.

    Article  Google Scholar 

  • Groffman PM, Bain DJ, Band LE, Belt KT, Brush GS, Grove JM, Pouyat RV, Yesilonis IC, Zipperer WC. 2003. Down by the riverside: urban riparian ecology. Front Ecol Environ 1:315–21.

    Article  Google Scholar 

  • Hamilton S. 2010. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657:19–35.

    Article  CAS  Google Scholar 

  • Harrison ET, Norris RH, Wilkinson SN. 2008. Can an indicator of river health be related to assessments from a catchment scale sediment model? Hydrobiologia 600:48–64.

    Article  Google Scholar 

  • Hijmans RJ, Graham CH. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–81.

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7.

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605.

    Article  PubMed  Google Scholar 

  • Horton R, Herweijer C, Rosenzweig C, Liu J, Gornitz V, Ruane AC. 2008. Sea level rise projections for current generation CGCMs based on the semi-empirical method. Geophys Res Lett 35:L02715.

    Article  Google Scholar 

  • Horwitz P, Bradshaw D, Hopper S, Davies P, Froend P, Bradshaw F. 2008. Hydrological change escalates risk of ecosystem stress in Australia’s threatened biodiversity hotspot. J R Soc West Aust 91:1–11.

    Google Scholar 

  • Hulme PE. 2005. Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–94.

    Article  Google Scholar 

  • Hulme PE, Pyšek P, Nentwig W, Vilà M. 2009. Will threat of biological invasions unite the European Union? Science 324:40–1.

    Article  CAS  PubMed  Google Scholar 

  • Jardine TD, Pusey BJ, Hamilton SK, Pettit NE, Davies PM, Douglas MM, Sinnamon V, Halliday IA, Bunn SE. 2012. Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168:829–38.

    Article  PubMed  Google Scholar 

  • Kearney MR, Wintle BA, Porter WP. 2010. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–13.

    Article  Google Scholar 

  • Keith DA, Holman L, Rodoreda S, Lemmon J, Bedward M. 2007. Plant functional types can predict decade-scale changes in fire-prone vegetation. J Ecol 95:1324–37.

    Article  Google Scholar 

  • Koca D, Smith B, Sykes M. 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Clim Change 78:381–406.

    Article  CAS  Google Scholar 

  • Lake PS. 2008. Drought, the “creeping disaster”: effects on aquatic ecosystems. Canberra: Land & Water Australia.

    Google Scholar 

  • Leahy PJ, Tibby J, Kershaw AP, Heijnis H, Kershaw JS. 2005. The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Res Appl 21:131–49.

    Article  Google Scholar 

  • Lu P, Yu Q, Liu J, Lee X. 2006. Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–31.

    Article  Google Scholar 

  • Lucas C, Hennessy K, Mills G, Bathols J. 2007. Bushfire weather in southeast Australia: recent trends and projected climate change impacts. Melbourne: Bushfire Cooperative Research Centre.

    Google Scholar 

  • McCann RK, Marcot BG, Ellis R. 2006. Bayesian belief networks: applications in ecology and natural resource management. Can J For Res 36:3053–62.

    Article  Google Scholar 

  • McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C. 2011. Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–11.

    Article  Google Scholar 

  • McDougall KL, Morgan JW, Walsh NG, Williams RJ. 2005. Plant invasions in treeless vegetation of the Australian Alps. Perspect Plant Ecol Evol Syst 7:159–71.

    Article  Google Scholar 

  • McDougall KL, Walsh NG. 2002. The flora of Nungar Plain, a treeless sub-alpine frost hollow in Kosciuszko National Park. Cunninghamia 7:601–10.

    Google Scholar 

  • McDougall KL. 2007. Grazing and fire in two subalpine peatlands. Aust J Bot 55:42–57.

    Article  Google Scholar 

  • Merritt DM, Scott ML, Poff NL, Auble GT, Lytle DA. 2010. Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshw Biol 55:206–25.

    Article  Google Scholar 

  • Meyer JL, Paul MJ, Taulbee WK. 2005. Stream ecosystem function in urbanizing landscapes. J North Am Benthol Soc 24:602–12.

    Google Scholar 

  • Morin X, Thuiller W. 2009. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–13.

    Article  PubMed  Google Scholar 

  • Mulrennan ME, Woodroffe CD. 1998. Saltwater intrusion into the coastal plains of the Lower Mary River, Northern Territory, Australia. J Environ Manage 54:169–88.

    Article  Google Scholar 

  • Murray JV, Stokes KE, van Klinken RD. 2012. Predicting the potential distribution of a riparian invasive plant: the effects of changing climate, flood regimes and land-use patterns. Glob Change Biol 18:1738–53.

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature (Lond) 403:853–8.

    Article  CAS  Google Scholar 

  • Naiman RJ, Décamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–58.

    Article  Google Scholar 

  • Naiman RJ, Décamps H, McClain ME. 2005. Riparia: ecology, conservation and management of streamside communities. San Diego: Elsevier.

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis E, Mori S, Morita T, Papper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Rooijen SV, Victor N, Dadi Z. 2000. IPCC special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Neilson RP, Pitelka LF, Solomon AM, Nathan RAN, Midgley GF, Fragoso JSMV, Lischke H, Thompson KEN. 2005. Forecasting regional to global plant migration in response to climate change. Bioscience 55:749–59.

    Article  Google Scholar 

  • O’Donnell J, Gallagher RV, Wilson PD, Downey PO, Hughes L, Leishman MR. 2012. Invasion hotspots for non-native plants in Australia under current and future climates. Glob Change Biol 18:617–29.

    Article  Google Scholar 

  • Otto K. 2005. Yarra: a diverting history of Melbourne’s Murky River. Melbourne: The Text Publishing Company.

    Google Scholar 

  • Pachauri RK, Reisinger A, Eds. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC. 104 pp.

  • Palmer MA, Liermann CAR, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N. 2008. Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–9.

    Article  Google Scholar 

  • Pearl J. 2009. Causality: models, reasoning, and inference. New York: Cambridge University Press.

    Book  Google Scholar 

  • Pettit NE, Froend RH, Davies PM. 2001. Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regul Rivers Res Manag 17:201–15.

    Article  Google Scholar 

  • Petty AM, Werner PA, Lehmann CER, Riley JE, Banfai DS, Elliott LP. 2007. Savanna responses to feral buffalo in Kakadu National Park, Australia. Ecol Monogr 77:441–63.

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47:769–84.

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA. 2007. Conservation planning in a changing world. Trends Ecol Evol 22:583–92.

    Article  PubMed  Google Scholar 

  • Pusey BJ, Warfe DM, Townsend SA, Douglas MM, Burrows D, Kennard MK, Close P. 2011. Condition, impacts and threats to aquatic biodiversity. In: Pusey BJ, Ed. Aquatic biodiversity in northern Australia: patterns, threats and future. Darwin: Charles Darwin University Press.

    Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ. 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–39.

    Article  Google Scholar 

  • Rumpff L, Duncan DH, Vesk PA, Keith DA, Wintle BA. 2011. State-and-transition modelling for adaptive management of native woodlands. Biol Conserv 144:1224–36.

    Article  Google Scholar 

  • Sandel B, Dangremond EM. 2012. Climate change and the invasion of California by grasses. Glob Change Biol 18:277–89.

    Article  Google Scholar 

  • Seastedt TR, Hobbs RJ, Suding KN. 2008. Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6:547–53.

    Article  Google Scholar 

  • Seavy NE, Gardali T, Golet GH, Griggs FT, Howell CA, Kelsey R, Small SL, Viers JH, Weigand JF. 2009. Why climate change makes riparian restoration more important than ever: recommendations for practice and research. Ecol Restor 27:330–8.

    Article  Google Scholar 

  • Stohlgren T, Pyšek P, Kartesz J, Nishino M, Pauchard A, Winter M, Pino J, Richardson D, Wilson J, Murray B, Phillips M, Ming-yang L, Celesti-Grapow L, Font X. 2011. Widespread plant species: natives versus aliens in our changing world. Biol Invasions 13:1931–44.

    Article  Google Scholar 

  • Traill LW, Bradshaw CJA, Delean S, Brook BW. 2010. Wetland conservation and sustainable use under global change: a tropical Australian case study using magpie geese. Ecography 33:818–25.

    Article  Google Scholar 

  • Trowbridge WB. 2007. The role of stochasticity and priority effects in floodplain restoration. Ecol Appl 17:1312–24.

    Article  PubMed  Google Scholar 

  • United Nations. 2010. World urbanization prospects: the 2009 revision population database. United Nations Population Division.

  • Verdonschot PFM, Hering D, Murphy J, Jähning SC, Rose NL, Graf W, Brabec K, Sandin L. 2010. Climate change and the hydrology and morphology of freshwater ecosystems. Kernan M, Battarbee R, Moss B, Eds. Climate change impacts on freshwater ecosystems. Pondicherry: Wiley-Blackwell. p65–83.

  • Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. 2011. Homogenization patterns of the world’s freshwater fish faunas. Proc Nat Acad Sci 108:18003–8.

    Article  PubMed  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116:882–92.

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467:555–61.

    Article  PubMed  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP. 2005. The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–23.

    Google Scholar 

  • Walsh CJ, Sharpe AK, Breen PF, Sonneman JA. 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. I. Benthic macroinvertebrate communities. Freshw Biol 46:535–51.

    Article  CAS  Google Scholar 

  • Walsh CJ, Waller KA, Gehling J, Nally RM. 2007. Riverine invertebrate assemblages are degraded more by catchment urbanisation than by riparian deforestation. Freshw Biol 52:574–87.

    Article  Google Scholar 

  • Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarosík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J. 2009. Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–93.

    Article  PubMed  Google Scholar 

  • Westoby M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–27.

    Article  CAS  Google Scholar 

  • Williams D, Baruch Z. 2000. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invasions 2:123–40.

    Article  Google Scholar 

  • Williams NSG, Hahs AK, Morgan JW. 2008. A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. Ecol Appl 18:347–59.

    Article  PubMed  Google Scholar 

  • Winn KO, Saynor MJ, Eliot MJ, Elio I. 2006. Saltwater intrusion and morphological change at the mouth of the East Alligator River, Northern Territory. J Coast Res 22:137–49.

    Article  Google Scholar 

Download references

Acknowledgments

Ideas for this paper were conceived at a “Riparian Ecosystems under Climate Change” workshop hosted by the National Climate Change Adaptation Research Facility—Water Resources and Freshwater Biodiversity Network and Terrestrial Biodiversity Network. Thanks to other workshop participants, especially Ugo Arbieu, for comments in the early stages of this paper. Thanks also to Brendan Wintle for insightful comments on a draft manuscript, Chris Walsh for reviewing the Melbourne scenario and an anonymous reviewer for constructive feedback. PD and MD acknowledge the Tropical Rivers and Coastal Knowledge (TRaCK) research consortium and MD also acknowledges support from the NERP North Australian Hub; JAC was partially supported by the ARC Centre of Excellence for Environmental Decisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane A. Catford.

Additional information

Author Contributions

JAC, RJN, LEC and JR conceived and designed the study; all authors performed the research and wrote the paper under the leadership of JAC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catford, J.A., Naiman, R.J., Chambers, L.E. et al. Predicting Novel Riparian Ecosystems in a Changing Climate. Ecosystems 16, 382–400 (2013). https://doi.org/10.1007/s10021-012-9566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9566-7

Keywords

Navigation