Skip to main content
Log in

Variable Responses of Lowland Tropical Forest Nutrient Status to Fertilization and Litter Manipulation

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Predicting future impacts of anthropogenic change on tropical forests requires a clear understanding of nutrient constraints on productivity. We compared experimental fertilization and litter manipulation treatments in an old-growth lowland tropical forest to distinguish between the effects of inorganic nutrient amendments and changes in nutrient cycling via litterfall. We measured the changes in soil and litter nutrient pools, litterfall, and fine root biomass in plots fertilized with nitrogen (N), phosphorus (P), or potassium (K), and in litter addition and litter removal treatments during 7 years. Soil inorganic N and litter N increased in double-litter plots but not in N-fertilized plots. Conversely, litter P and soil pools of P and K increased in fertilized plots but not in the double-litter plots. Soil and litter pools of N and K decreased in the no-litter plots. Changes in litterfall with added nutrients or litter were only marginally significant, but fine root biomass decreased with both the litter and the K addition. Differences between the two experiments are mostly attributable to the coupled cycling of carbon and nutrients in litter. Increased nutrient inputs in litter may improve plant uptake of some nutrients compared to fertilization with similar amounts. The litter layer also appears to play a key role in nutrient retention. We discuss our findings in the context of possible impacts of anthropogenic change on tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams JA. 1986. Identification of heterotrophic nitrification in strongly acid larch humus. Soil Biol Biochem 18:324–39.

    Google Scholar 

  • Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67.

    Article  CAS  Google Scholar 

  • Attiwill PM, Adams MA. 1993. Nutrient cycling in forests. New Phytol 124:561–82.

    Article  CAS  Google Scholar 

  • Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM. 2004. Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2:315–22.

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Ann Rev Ecol Syst 16:363–92.

    Google Scholar 

  • Cavallaro N, McBride MB. 1984. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions. Soil Sci Soc Am J 48:1050–4.

    Article  CAS  Google Scholar 

  • Cavelier J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201.

    Article  CAS  Google Scholar 

  • Chang S-C, Wang C-P, Feng C-M, Rees R, Hell U, Matzner E. 2007. Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest. For Ecol Manag 242:133–41.

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter D, Chambers J, Thomlinson JR, Jian Ni, Holland EA. 2001. NPP in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–84.

    Article  Google Scholar 

  • Corre MD, Veldkamp E, Arnold J, Wright SJ. 2010. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–29.

    Article  PubMed  Google Scholar 

  • Davidson EA, Howarth RW. 2007. Nutrients in synergy. Nature 449:1000–1.

    Article  PubMed  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere—a resource-based approach. Ann Rev Ecol Syst 23:201–35.

    Article  Google Scholar 

  • Focht DD, Verstraete W. 1977. Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214.

    CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A. 2004. Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–20.

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JF, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Gosz JR, Likens GE, Bormann FH. 1976. Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia 22:305–20.

    Article  Google Scholar 

  • Grubb PJ. 1989. The role of mineral nutrients in the tropics: a plant ecologist’s view. In: Proctor J, Ed. Mineral nutrients in tropical forest and savanna ecosystems. Oxford: Blackwell. p 417–39.

    Google Scholar 

  • Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 162:243–66.

    Article  Google Scholar 

  • Hall SJ, Matson PA. 2003. Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecol Monogr 73:107–29.

    Article  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE. 2011. Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–62.

    Article  PubMed  Google Scholar 

  • Herrera R, Merida T, Stark NM, Jordan CF. 1978. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–9.

    Article  CAS  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ. 2011. Long-term change in the nitrogen cycle of tropical forests. Science 334:664–6.

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–77.

    Article  Google Scholar 

  • Ingestad T. 1974. Towards optimum fertilization. Ambio 3:49–54.

    Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43.

    PubMed  Google Scholar 

  • Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ. 2009. Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Change Biol 15:2049–66.

    Article  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • Leigh EG. 1999. Tropical forest ecology. Oxford: Oxford University Press. p 245.

    Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Ryan DF, Lovett GM, Fahey T, Reiners WA. 1994. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25:61–125.

    Article  CAS  Google Scholar 

  • Liu L, King JS, Booker FL, Giardina CP, Allen HL, Hu S. 2009. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Glob Change Biol 15:441–53.

    Article  Google Scholar 

  • Lodge DJ, McDowell WH, McSwiney CP. 1994. The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–7.

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, McDowell WH, Macy J, Ward SK, Leisso R, Claudio-Campos K, Kühnert K. 2008. Distribution and role of mat-forming saprobic basidiomycetes in a tropical forest. In: Boddy L, Frankland JC, van West P, Eds. Ecology of saprotrophic basidiomycetes. London: Academic Press. p 197–209.

    Chapter  Google Scholar 

  • Loladze I. 2002. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–61.

    Article  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A. 2010. Stoichiometric controls on dynamics of carbon, nitrogen, and phosphorus in decomposing litter. Ecol Monogr 80:89–106.

    Article  Google Scholar 

  • Marschner H. 1993. Zinc uptake from soils. In: Robson AD, Ed. Zinc in soils and plants. Dordrecht: Kluwer. p 59–77.

    Chapter  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–65.

    Article  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P. 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:GB2005. doi:10.1029/2003GB002145.

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.

    Article  PubMed  CAS  Google Scholar 

  • Ostertag R. 2010. Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil 334:85–98.

    Article  CAS  Google Scholar 

  • Ostertag R, Hobbie SE. 1999. Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–73.

    Article  Google Scholar 

  • Paoli GD, Curran LM, Zak DR. 2005. Phosphorus efficiency of Bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology 86:1548–61.

    Article  Google Scholar 

  • Parker GG. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133.

    Article  Google Scholar 

  • Pedersen H, Dunkin KA, Firestone MK. 1999. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:125–50.

    Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–6.

    Article  Google Scholar 

  • Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-PLUS. New York (NY): Springer.

    Book  Google Scholar 

  • Qualls RG, Haines BL, Swank WT. 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–66.

    Article  Google Scholar 

  • R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Reddy KJ, Wang L, Gloss SP. 1995. Solubility and mobility of copper, zinc and lead in acidic environments. Plant Soil 171:53–8.

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM. 1981. Nitrification potentials in primary and secondary succession. Ecology 62:376–86.

    Article  Google Scholar 

  • Sanchez PA. 1976. Properties and management of soils in the tropics. New York: Wiley. p 630.

    Google Scholar 

  • Sayer EJ. 2006. Using experimental litter manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.

    Article  PubMed  Google Scholar 

  • Sayer EJ, Tanner EVJ. 2010. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–62.

    Article  Google Scholar 

  • Sayer EJ, Tanner EVJ, Cheesman AW. 2006a. Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13.

    Article  CAS  Google Scholar 

  • Sayer EJ, Tanner EVJ, Lacey AL. 2006b. Litter quantity affects early-stage decomposition and meso-arthropod abundance in a moist tropical forest. For Ecol Manag 229:285–93.

    Article  Google Scholar 

  • Sayer EJ, Powers JS, Tanner EVJ. 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE e1299, doi:10.1371/journal.pone.0001299.

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nature Clim Change 1:304–7.

    Article  CAS  Google Scholar 

  • Schimel JP, Firestone MK, Killham KS. 1984. Identification of heterotrophic nitrification in a Sierran forest soil. Appl Environ Microbiol 48:802–6.

    PubMed  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–64.

    PubMed  Google Scholar 

  • Stark NM, Jordan CF. 1978. Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–7.

    Article  CAS  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM. 2004. Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry 69:315–39.

    Article  Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MMC. 2007. Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–18.

    Article  PubMed  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.

    Article  PubMed  Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17.

    Article  Google Scholar 

  • Tripler CE, Causal SS, Likens GE, Walter MT. 2006. Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–66.

    Article  PubMed  Google Scholar 

  • Turner BL, Engelbrecht BMJ. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315.

    Article  CAS  Google Scholar 

  • Tyler G. 2005. Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For Ecol Manag 206:167–77.

    Article  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Machado Araújo M, Rangel-Vasconcelos LGT, Reis de Carvalho CJ, Staudhammer CL, Oliveira FA. 2008. Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. J Trop Ecol 24:27–38.

    Article  Google Scholar 

  • Vincent AG, Turner BL, Tanner EVJ. 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61:48–57.

    Article  CAS  Google Scholar 

  • Vitousek PM. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.

    Article  Google Scholar 

  • Vitousek PM. 1984. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285–98.

    Article  CAS  Google Scholar 

  • Vitousek PM, Sanford RL. 1986. Nutrient cycling in moist tropical forest. Ann Rev Ecol Syst 17:137–67.

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–50.

    Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.

    Article  PubMed  Google Scholar 

  • Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Witkamp M. 1971. Soils as components of ecosystems. Ann Rev Ecol Syst 2:85–110.

    Article  CAS  Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL. 2009. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–21.

    Article  PubMed  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD. 2011. Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology 92:1616–25.

    Article  PubMed  Google Scholar 

  • Wullaert H, Homeier J, Valarezo C, Wilcke W. 2010. Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. For Ecol Manag 260:1434–45.

    Article  Google Scholar 

  • Yavitt JB, Wieder RK. 1988. Nitrogen, phosphorus and sulfur properties of some forest soils on Barro Colorado Island, Panama. Biotropica 20:2–10.

    Article  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Jason MJ. 2009. Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Aust J Soil Res 47:674–87.

    Article  CAS  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ. 2011. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecol 36:433–45.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank O. Hernandez, R. Gonzalez, F. Valdez, J. Valdez, G. Perez, F. Zeugin, D. Ureña, A. Vincent, and all Cambridge student volunteers for help in the field. We thank L. Schreeg for information on phosphate sorption, A. Beckermann and J. Staley for statistical advice and M. Heard for useful comments. We are grateful to P. Vitousek and two anonymous reviewers for their helpful suggestions on improving earlier drafts of the manuscript. EJS was funded by a Gates Cambridge Scholarship, a European Union Marie-Curie Outgoing Fellowship MOIF-CT-2005-21728, and a Cambridge Philosophical Society Travel Grant. EVT was funded by the Andrew W. Mellon Foundation, Gonville and Caius College Cambridge and the Department of Plant Sciences, Cambridge. SJW was funded by the Andrew W. Mellon Foundation. SJW, JBY and KEH were funded by a Smithsonian Scholarly Studies Grant. MK was funded by NSF Grant No. 0212386 and JSP was funded by a grant from the Smithsonian Tropical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Sayer.

Additional information

Author Contributions

SJW, EVT, JYB, and KEH designed the study; EJS, KEH, JSP, MK, MNG and BLT performed the research, EJS analyzed the data, EJS, SJW and JYB wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayer, E.J., Joseph Wright, S., Tanner, E.V.J. et al. Variable Responses of Lowland Tropical Forest Nutrient Status to Fertilization and Litter Manipulation. Ecosystems 15, 387–400 (2012). https://doi.org/10.1007/s10021-011-9516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9516-9

Keywords

Navigation