Skip to main content
Log in

Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ∼116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m−2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m−2 y−1, which was not different than that of a nearby unburned stand (160 ± 48 g m−2 y−1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m−2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m−2 y−1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m−2 y−1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Amundson R, Jenny H. 1997. On a state factor model of ecosystems. BioScience 47:536–43.

    Article  Google Scholar 

  • Bevington PR. 1969. Data reduction and error analysis for the physical sciences. McGraw-Hill, New York.

    Google Scholar 

  • Bhatti JS, Apps MJ, Jiang H. 2002. Influence of nutrients, disturbances and site conditions on carbon stocks along a boreal forest transect in central Canada. Plant Soil 242:1–14.

    Article  CAS  Google Scholar 

  • Black RA, Bliss LC. 1978. Recovery sequence of Picea mariana-Vaccinium uliginosum forests after burning near Inuvik, Northwest Territories, Canada. Can J Bot 56:2020–30.

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST. 2002a. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J Forest Res 32:1441–50.

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST. 2002b. Coarse woody debris and its annual carbon flux for a boreal black spruce fire chronosequence. J Geophys Res-Atmos 108(D3): article number 8220. DOI 10/1029/2001JD000861

  • Bond-Lamberty B, Wang C, Gower ST. 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–87.

    Article  Google Scholar 

  • Brewer JS. 1999. Short-term effects of fire and competition on growth and plasticity of the yellow pitcher plant, Sarracenia alata (Sarraceniaceae). Am J Bot 86:1264–71.

    Article  PubMed  Google Scholar 

  • Chambers, S, Chapin FS III. 2003. Fire effects on surface-atmosphere exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate. J Geophys Res 108(D1): article number 8145. DOI 10.1029/2001JD000530

  • Chapin FS III, Hollingsworth T, Murray DF, Viereck LA, Walker MD. 2006a. Floristic diversity and vegetation distribution in the Alaskan boreal forest. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Verbyla DL (Eds). Alaska’s changing boreal forest. Oxford University Press, New York, pp. 81–99.

    Google Scholar 

  • Chapin FS III, Viereck LA, Adams P, Van Cleve K, Fastie CL, Ott RA, Mann D, Johnstone JF. 2006b. Successional processes in the Alaskan boreal forest. In: Chapin FS III, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (Eds). Alaska’s changing boreal forest. Oxford University Press, New York, pp. 100–20.

    Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA. 1995. Response of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Chen W, Chen JM, Price DT, Cihlar J. 2002. Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada. Can J Forest Res 32:388–842.

    Google Scholar 

  • Conard SG, Ivanova GA. 1997. Wildfire in Russian boreal forests—potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Pollut 98:305–13.

    Article  CAS  Google Scholar 

  • Deltagraph. 2006. Deltagraph for Windows. Salt Lake City, UT: SPSS Inc. and Redrock Software.

  • Dixon RK, Krankina ON. 1993. Forest fires in Russia: carbon dioxide emissions to the atmosphere. Can J Forest Res 23:700–5.

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185–90.

    Article  PubMed  CAS  Google Scholar 

  • Dyrness CT, Viereck LA, Van Cleve K. 1986. Fire in taiga communities of interior Alaska. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (Eds). Forest ecosystems in the Alaskan taiga. Springer-Verlag, New York, pp. 74–86.

    Google Scholar 

  • ESRI Software. 2001. Arcview 8.0. Redlands, CA: ESRI Software.

  • Foster DR. 1985. Vegetation development following fire in Picea mariana (black spruce)—Pleurozium forests of south-eastern Labrador, Canada. J Ecol 73:517–34.

    Article  Google Scholar 

  • Harden, JW, Mack MC, Veldhuis H, Gower ST. 2003. Fire dynamics and implications for nitrogen cycling in boreal forests. J Geophys Res 108(D3): article number 8223. DOI 10.1029/2001JD000494

  • Harden JW, Manies KL, Neff JC, Turetsky MR. 2006. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Glob Change Biol 12:1–13.

    Article  Google Scholar 

  • Harden, JW, Munster J, Bubier JL, Mack MC, Manies KL. Unpublished Manucscript. Changes in type, cover and production of moss in a fire chronosequence of Interior Alaska. Can J Forest Res

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6:174–84.

    Article  Google Scholar 

  • Harper KA, Bergeron Y, Drapeau P, Gauthier S, De Grandpré L. 2005. Structural development following fire in black spruce boreal forest. Forest Ecol Manage 206:293–306.

    Article  Google Scholar 

  • Helmisaari H-S, Makkonen K, Kellomaki S, Valtonen E, Malkonen E. 2002. Above- and belowground biomass, production, and nitrogen use in Scots pine stands of eastern Finland. Forest Ecol Manage 165:317–26.

    Article  Google Scholar 

  • Hinzman LD, Viereck LA, Adams PC, Romanovsky VE, Yoshikawa K. 2006. Climate and permafrost dynamics of the Alaskan boreal forest. In: Chapin FS III, Oswood MW, van Cleve K, Viereck LA, Verbyla DL (Eds). Alaska’s changing boreal forest. Oxford University Press, New York, pp. 39–61.

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JT. 2000. A mechanistic understanding of carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210.

    Article  Google Scholar 

  • Hollingsworth TN, Walker MD, Chapin FS III, Parsons AL. 2006. Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Can J Forest Res 36:1781–96.

    Article  Google Scholar 

  • Hultén E. 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford.

    Google Scholar 

  • Jenny H. 1941. Factors of soil formation: a system of quantitative pedology. Republished in 1994. New York: Dover Publications

  • Johnstone JF. 2006. Response of boreal plant communities to variation in previous fire-free interval. Int J Wildland Fire 15:497–508.

    Article  Google Scholar 

  • Johnstone JF, Kasischke ES. 2005. Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest. Can J Forest Res 35:2151–63.

    Article  Google Scholar 

  • Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP. 1999. Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815–22.

    PubMed  Google Scholar 

  • Kasischke ES. 2000. Effects of climate change and fire on carbon storage in North American boreal forests. In: Kasischke ES, Stocks BJ (Eds). Fire, climate change and carbon cycling in the boreal forest. Springer-Verlag, New York, pp. 440–52.

    Google Scholar 

  • Kasischke ES, Christensen NL, Stocks BJ. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–51.

    Article  Google Scholar 

  • Kasischke ES, O’Neill KP, French NHF, Bourgeau-Chavez LL. 2000. Controls on patterns of biomass burning in Alaskan boreal forests. In: Kasischke ES, Stocks BJ (Eds). Fire, climate change, and carbon cycling in the boreal forest. Springer-Verlag, New York, pp. 173–96.

    Google Scholar 

  • Kasischke ES, Rupp TS, Verbyla DL. 2006. Fire trends in the Alaskan boreal forest. In: Chapin FS III, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (Eds). Alaska’s Changing Boreal Forest. Oxford University Press, New York, pp. 285–301.

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD. 2004. The limits to tree height. Nature 428:851–4.

    Article  PubMed  CAS  Google Scholar 

  • Kurz WA, Apps MJ. 1995. An analysis of future carbon budgets of Canadian boreal forests. Water Air Soil Pollut 82:321–31.

    Article  CAS  Google Scholar 

  • Kurz WA, Apps MJ. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–47.

    Article  Google Scholar 

  • Lecomte N., Simard M, Fenton NJ, Bergeron Y. 2006. Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9:1215–30.

    Article  Google Scholar 

  • Litvak M, Miller S, Wofsy S, Goulden ML. 2003. Effect of stand age on whole ecosystem CO2 exchange in Canadian boreal forest. J Geophys Res-Atmos 108(D3): article number 8225. DOI 10.1029/2001JD000854

  • Liu H, Randerson JT, Lindfors J, Chapin FS III. 2005. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J Geophys Res 110(D13101). DOI 10.1029/2004JD005158

  • Manies KL, Harden JW, Silva SR, Briggs PH, Schmid BM. 2004. Soil data from Picea mariana stands near Delta Junction, AK of different ages and soil drainage type. USGS Open File Report 2004-1271. http://www.pubs.usgs.gov/of/2004/1271/

  • Mann DH, Plug LJ. 1999. Vegetation and soil development at an upland taiga site, Alaska. Ecoscience 6:272–85.

    Google Scholar 

  • Neff JC, Harden JW, Gleixner G. 2005. Fire effects on soil organic matter content and composition in boreal interior Alaska. Can J Forest Res 35:2178–87.

    Article  CAS  Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM. 2003. Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248–60.

    Article  CAS  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD. 2002. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Can J Forest Res 32:1525–41.

    Article  Google Scholar 

  • O’Neill, KP, Kasischke ES, Richter DD. 2003. Seasonal and decadal patterns of soil carbon uptake and emission along an age-sequence of burned black spruce stands in interior Alaska. J Geophys Res 108(D3): article number 8155. DOI 10.1029/2001JD000443

  • Oechel WC, Van Cleve K. 1986. The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (Eds). Forest ecosystems in the Alaskan taiga. Springer-Verlag, New York, pp. 121–37.

    Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D. 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–81.

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Zhang L, Zhou X, Dang Q, Huang S. 2004. Developing and evaluating tree height-diameter models at three geographic scales for black spruce in Ontario. Northern J Appl Forest 21:83–92.

    Google Scholar 

  • Rahn T, Eiler JM, Kitchen N, Fessenden JE, Randerson JT. 2002. Concentration and δD of molecular hydrogen in boreal forests: ecosystem-scale systematics of atmospheric H2. Geophys Res Lett 29(18): article number 1888. DOI 10.1029/2002GL015118

  • Raison RJ. 1979. Modifications of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108.

    Article  CAS  Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS III, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS. 2006. The impact of boreal forest fire on climate warming. Science 314:1130–2.

    Article  PubMed  CAS  Google Scholar 

  • Reid DB, Silins U, Lieffers VJ. 2003. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire origin lodgepole pine stands. Tree Physiol 23:833–40.

    PubMed  Google Scholar 

  • Russell S. 1988. Measurements of Bryophyte growth. Biomass (harvest) techniques. In: Glime JM (Ed). Methods in bryology. Hattori Botanical Laboratory, Nichinan, pp. 249–57.

    Google Scholar 

  • Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyhukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink–a synthesis. Glob Change Biol 5:703–22.

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159–207.

    Article  Google Scholar 

  • Shaver GR, Chapin FS III. 1991. Production:biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31.

    Article  Google Scholar 

  • Singh T. 1986. Generalizing biomass equations for the Boreal Forest Region of West-Central Canada. Forest Ecol Manage 17:97–107.

    Article  Google Scholar 

  • Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin J-Z, Lawrence K, Hartley GR, Mason JA, McKenney DW. 1998. Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change 30:1–13.

    Article  Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flanigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR. 2003. Large forest fires in Canada, 1959–1997. J Geophys Res 108(D3): article number 8149. DOI 10.1029/2001JD000484

  • SYSTAT. 2002. SYSTAT for Windows version 10.2. Evanston, IL: SYSTAT Software Inc.

  • Treseder KK, Mack MC, Cross A. 2004. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–38.

    Article  Google Scholar 

  • Treseder KK, Turner KM, Mack MC. 2007. Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88.

    Article  Google Scholar 

  • Tyree MT, Sperry JS. 1989. The vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38.

    Article  Google Scholar 

  • Van Cleve K, Chapin FS III, Dryness CT, Viereck LA. 1991. Element cycling in taiga forest: state-factor control. BioScience 41:78–88.

    Article  Google Scholar 

  • Viereck LA, Dyrness CT, Van Cleve K, Foote MJ. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J Forest Res 13:703–20.

    Article  Google Scholar 

  • Viereck LA, Van Cleve K, Dyrness CT. 1986. Forest ecosystem distribution in the taiga environment. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (Eds). Forest ecosystems in the Alaskan taiga. Springer-Verlag, New York, pp. 22–43.

    Google Scholar 

  • Vitt DH, Marsh JE, Bovey RB. 1988. Mosses, lichens and ferns of Northwest North America. Lone Pine Publishing, Edmonton.

    Google Scholar 

  • Vlassova TK. 2002. Human Impacts on the tundra–taiga zone dynamics: the case of the Russian lesotundra. Ambio Special Report (Tundra–Taiga Treeline Research) 12:30–36

  • Vogel JG, Valentine DW, Ruess RW. 2005. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Can J Forest Res 35:161–74.

    Article  CAS  Google Scholar 

  • Wang C, Bond-Lamberty B, Gower ST. 2003. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob Change Biol 9:1066–79.

    Article  Google Scholar 

  • Wang GG, Klinka K. 1995. Site-specific height curves for white spruce stands based on stem analysis and site classification. Ann Sci Forest 52:607–18.

    Article  Google Scholar 

  • Welp LR, Randerson JT, Liu H. 2006. Seasonal exchange of CO2 and δ18O–CO2 varies with post-fire succession in boreal forest ecosystems. J Geophys Res—Biogeosci 111: article number G03007. DOI 10.1029/2005JG000126

  • Welp LR, Randerson JT, Liu HP. 2007. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional types in boreal forest ecosystems. Agr Forest Meterol 147(3–4):172–185.

    Article  Google Scholar 

  • Western Regional Climate Center. 2001. Reno, NV: Desert Research Institute. http://www.wrcc.dri.edu/index.html

  • Yarie J. 1981. Forest fire cycles and life tables: a case study from interior Alaska. Can J Forest Res 11:554–62.

    Article  Google Scholar 

  • Yarie J, Billings S. 2002. Carbon balance of the taiga forest within Alaska: present and future. Can J Forest Res 32:757–67.

    Article  Google Scholar 

  • Yarie J, Kane E, Mack MC. 2007. Aboveground biomass equations for trees of Interior Alaska. Bulletin 115, US Forest Service

  • Yarie J, Van Cleve K. 2006. Controls of taiga forest production in interior Alaska. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Verbyla DL (Eds). Alaska’s changing boreal forest. Oxford University Press, New York, pp. 171–88.

    Google Scholar 

  • Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD. 2003. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J Geophys Res 108(D1): article number 8148. DOI 10.1029/2001JD000438

  • Zasada JC, Sharik TL, Nygren M. 1992. The reproductive process in boreal forest trees. In: Shugart HH, Leemans R, Bonan GB (Eds). A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, pp. 85–125.

    Google Scholar 

  • Zhuang Q, McGuire AD, Harden J, O’Neill KP, Romanovsky VE, Yarie J. 2003. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J Geophys Res 108(D1):8147. DOI 10.1029/2001JD001244

    Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Chapin FS III, Chapin MC, Reynolds JF. 1999. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284:1973–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Amber Borner and Rebecca McGuire for assistance in the lab, the many undergraduate students from the University of Florida and University of Pennsylvania for their participation in field and lab work, and Ben Bond-Lamberty for sharing his spruce allometry data. This research was supported by NSF DEB-0075669 and a grant from the Andrew W. Mellon Foundation to M.C.M., and by the Bonanza Creek Long Term Ecological Research program (NSF DEB-0423442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle C. Mack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, M.C., Treseder, K.K., Manies, K.L. et al. Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska. Ecosystems 11, 209–225 (2008). https://doi.org/10.1007/s10021-007-9117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9117-9

Keywords

Navigation