Skip to main content

Advertisement

Log in

Environmental amenities as a renewable resource: management and conflicts

  • Research Article
  • Growth and the Environment
  • Published:
Environmental Economics and Policy Studies Aims and scope Submit manuscript

Abstract

The major assumption made in this paper, is that the environment offers at large two distinct services each of different kind. First, the environmental resources may serve as inputs to the production of conventional goods. An example is the exploitation of an oil source from which, one firm extracts the oil which in turn is used as a fossil fuel for an industry. In the worst case, the use of the natural resources for industrial purposes will negatively affect the environment, e.g. the air quality over an industrial area. Nevertheless, saving abatement costs, production cost decreases due to possibility to pollute. Therefore, this first environmental service is evaluated positively by the economic agents (firms and consumers). The second service provided is the environment itself which offers amenities (i.e. clean air, blue coasts, natural creeks, clean rivers and lakes etc.) The crucial difference between the uses of the above services is how environmental quality affected and how much is the environmental degradation. From the pure economic point of view, the uses of the environmental services are consumptive and non-consumptive. Conversely in natural resources means, the environmental stock may be used as a raw material for the industrial production of conventional goods providing simultaneously a positive externality. Hence, the main purpose of this paper is twofold. First it considers the management at which the social planer has to steer emissions in an optimal way, meaning that both environmental quality and stock of pollutants remain optimal. Second it considers the conflict between the representative polluting producer and the representative environmental quality enjoyer which actually abates. In both cases we explore the complex limit cycle equilibrium, but additionally in the second case the analytical expressions of the crucial variables of the model are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Where \( \tilde{T} \) identifies the minimal state of the environment.

References

  • Clark CW, Clarke FH, Munro GR (1979) The optimal exploitation or renewable resources stocks: problems of irreversible investment. Econometrica 47:25–47

    Article  Google Scholar 

  • Dockner E (1985) Local stability analysis in optimal control problems with two state variables. In: Feichtinger G (ed) Optimal control theory and economic analysis 2. North Holland, Amsterdam

    Google Scholar 

  • Dockner J, Feichtinger G (1991) On the optimality of limit cycles in dynamic economic systems. J Econ 53:31–50

    Article  Google Scholar 

  • Dockner JE, Long VN (1993) International pollution control: cooperative versus noncooperative strategies. J Environ Econ Manag 24:13–29

    Article  Google Scholar 

  • Dockner E, Jorgensen S, Long NV, Sorger G (2000) Differential games in economics and management science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Farzin YH, Akao KI (2015) Poverty, social preference for employment, and natural resource depletion. Environ Econ Policy Stud 17(1):1–26

    Article  Google Scholar 

  • Feichtinger G, Novak AJ (1994) Differential game model of the dynastic cycle: 3D canonical system with a stable limit cycle. J Optim Theory Appl 80(3):407–423

    Article  Google Scholar 

  • Forster B (1980) Optimal energy use in a polluted environment. J Environ Econ Manag 7:321–333

    Article  Google Scholar 

  • Gatto M, Muratori S, Rinaldi S (1988) On the optimality of the logistic growth. J Optim Theory Appl 57(3):513–517

    Article  Google Scholar 

  • Grass D, Gaulkins J, Feichtinger G, Tragler G, Behrens D (2008) Optimal control of nonlinear processes With applications in drugs, corruption and terror. Springer, Berlin

    Book  Google Scholar 

  • Hartman P (1982) Ordinary differential equations, 2nd edn. Birkhauser, Basel

    Google Scholar 

  • Kuznetsov Y (2004) Elements of applied bifurcation theory, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Skiba AK (1978) Optimal growth with a convex—concave production function. Econometrica 46:527–539

    Article  Google Scholar 

  • Verhulst PF (1845) Recherches Mathematiques sur la Loi d' Accroissement de la Population, Memoirs de l' Academic Royale Belgique, vol. 18, pp 1–38 (In French)

  • Wirl F (1995) The cyclical exploitation of renewable resources stocks may be optimal. J Environ Econ Manag 29:252–261

    Article  Google Scholar 

  • Xepapadeas A (1992) Environmental policy design and dynamic non—point source pollution. Environ Econ Manag 23:22–39

    Article  Google Scholar 

  • Yang J, Managi S, Sato M (2015) The effect of institutional quality on national wealth: an examination using multiple imputation method. Environ Econ Pol Stud 173:431–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Halkos.

Appendices

Appendix 1: Proof of proposition 4

With the specifications, given in subsection entitled “Periodic solutions”, one can compute

$$ G^{\prime } \left( X \right) = R\left( {1 - 2X} \right),\quad G^{\prime \prime } \left( X \right) = - 2R,\quad \phi_{u} \left( {u, \nu } \right) = \gamma u^{\gamma - 1} ,\quad \phi_{\nu } \left( {u, \nu } \right) = u^{\gamma } ,\quad C^{\prime } \left( u \right) = C,\quad A^{\prime } \left( \nu \right) = \nu^{\xi - 2} ,\quad D^{\prime } \left( X \right) = D,\quad \upsilon^{\prime } \left( X \right) = \upsilon $$
$$ \frac{{\partial H_{1} }}{\partial u} = 0 \Leftrightarrow \left( {1 - \lambda } \right)\phi_{u} \left( {u,\nu } \right) = C^{\prime}\left( u \right) \Leftrightarrow \left( {1 - \lambda } \right)\gamma u^{\gamma - 1} \nu = C $$
(45)
$$ \frac{{\partial H_{2} }}{\partial \nu } = 0 \Leftrightarrow A^{{\prime }} \left( \nu \right) = \mu \phi_{\nu } \left( {u,\nu } \right) \Leftrightarrow \mu u^{\gamma } = \nu^{\xi - 2} $$
(46)

Combining (45) and (46) the optimal strategies take the following forms

$$ u^{*} = \mu_{{}}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} \left[ {\frac{C}{{\gamma \left( {1 - \lambda } \right)}}} \right]^{{{{\left( {\xi - 2} \right)} \mathord{\left/ {\vphantom {{\left( {\xi - 2} \right)} {\left[ {1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)} \right]}}}} $$
(47)
$$ \nu^{*} = \mu_{{}}^{{{{\left( {\gamma - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\gamma - 1} \right)} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} \left[ {\frac{C}{{\gamma \left( {1 - \lambda } \right)}}} \right]^{{{\gamma \mathord{\left/ {\vphantom {\gamma {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} $$
(48)

and the optimal environmental damage becomes

$$ \phi \left( {u^{*} ,\nu^{*} } \right) = \mu^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} \left[ {\frac{C}{{\gamma \left( {1 - \lambda } \right)}}} \right]^{{{{\gamma \left( {\xi - 1} \right)} \mathord{\left/ {\vphantom {{\gamma \left( {\xi - 1} \right)} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} $$
(49)

with the following partial derivatives

$$ \begin{aligned} \frac{\partial \phi }{\partial \lambda } & = \frac{{\mu^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} \left[ {\frac{C}{{\gamma \left( {1 - \lambda } \right)}}} \right]^{{{{\gamma \left( {\xi - 1} \right)} \mathord{\left/ {\vphantom {{\gamma \left( {\xi - 1} \right)} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} }}{{\left( {1 - \lambda } \right)}}\frac{{\gamma \left( {\xi - 1} \right)}}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}} \\ & = \frac{{\phi \left( {u^{*} ,\nu^{*} } \right)}}{{\left( {1 - \lambda } \right)}}\frac{{\gamma \left( {\xi - 1} \right)}}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}} \\ \end{aligned} $$
(50)
$$ \begin{aligned} \frac{\partial \phi }{\partial \mu } & = \frac{{\mu^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} \left[ {\frac{C}{{\gamma \left( {1 - \lambda } \right)}}} \right]^{{{{\gamma \left( {\xi - 1} \right)} \mathord{\left/ {\vphantom {{\gamma \left( {\xi - 1} \right)} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}} \right. \kern-0pt} {\left[ {1 + \left( {1 - \gamma } \right)\left( {1 - \xi } \right)} \right]}}}} }}{{\lambda_{2} }}\frac{ - 1}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}} \\ & = \frac{{\phi \left( {u^{*} ,\nu^{*} } \right)}}{\mu }\frac{ - 1}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}} \\ \end{aligned} $$
(51)

Both derivatives (50), (51) are negatives due to the assumptions on the parameters \( \gamma , \xi \in \left( {0,1} \right) \) and on the signs of the functions derivates, that is \( \phi_{u} > 0, \phi_{\nu } > 0, \upsilon^{{\prime }} \left( x \right) > 0, D^{{\prime }} \left( x \right) > 0 \), which ensures the positive sign of the adjoints \( \lambda , \mu \).

Bifurcation condition \( w = \frac{\det \left( J \right)}{{{\text{tr }}\left( J \right)}} \) now becomes

\( \rho_{1} \rho_{2} \left[ {\rho_{1} + \rho_{2} - 2G^{{\prime }} \left( X \right)} \right] = \lambda \rho_{1} G^{{{\prime \prime }}} \left( X \right)\frac{\partial \phi }{\partial \lambda } + \mu \rho_{2} G^{{{\prime \prime }}} \left( X \right)\frac{\partial \phi }{\partial \mu } \), which after substituting the values from (50), (51) and making the rest of algebraic manipulations, finally yields (at the steady states)

$$ \frac{{\phi \left( {u_{\infty } ,\nu_{\infty } } \right)G^{{{\prime \prime }}} \left( X \right)}}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}}\left[ {\rho_{1} \gamma \left( {1 - \xi } \right)\frac{D}{{D + G^{{\prime }} \left( X \right) - \rho_{1} }} - \rho_{2} } \right] - \rho_{1} \rho_{2} \left[ {\rho_{1} + \rho_{2} - 2G^{{\prime }} \left( X \right)} \right] = 0 $$
(52)

Where we have set \( \frac{\lambda }{1 - \lambda } = \frac{D}{{\rho_{1} - G^{{\prime }} \left( X \right) - D}} \) stemming from the adjoint equation \( \dot{\lambda } = \lambda \left( {\rho_{1} - G^{{\prime }} \left( X \right)} \right) - D^{{\prime }} \left( X \right) \), which at the steady states reduces into \( \lambda = D^{\prime } \left( X \right)/D^{\prime } \left( X \right)\left( {\rho_{1} - G^{\prime } \left( X \right)} \right).\left( {\rho_{1} - G^{\prime } \left( X \right)} \right) \).

Condition w > 0 after substitution the values from (50), (51) becomes

$$ w = \rho_{1} \rho_{2} - \left[ {G^{\prime } \left( X \right)} \right]^{2} + \frac{{\phi \left( {u,\nu } \right)G^{\prime \prime } \left( X \right)}}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}}\left[ {\gamma \left( {1 - \xi } \right)\frac{ - D}{{G^{\prime}\left( X \right) + D - \rho_{1} }} + 1} \right] > 0 $$
(53)

The division of (52) by ρ 1 yields

$$ \frac{{\phi \left( {u_{\infty } ,\nu_{\infty } } \right)G^{{{\prime \prime }}} \left( X \right)}}{{1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)}}\left[ {\gamma \left( {1 - \xi } \right)\frac{D}{{D + G^{{\prime }} \left( X \right) - \rho_{1} }} - \frac{{\rho_{2} }}{{\rho_{1} }}} \right] - \rho_{2} \left[ {\rho_{1} + \rho_{2} - 2G^{{\prime }} \left( X \right)} \right] = 0 $$
(54)

The sum (53) + (54) must be positive, thus after simplifications and taking into account, at the steady state, that ϕ(u ν ) = G(X), we have:\( G\left( X \right)G^{{{\prime \prime }}} \left( X \right)\frac{{\rho_{1} - \rho_{2} }}{{\rho_{1} \left[ {1 + \left( {1 - \xi } \right)\left( {1 - \gamma } \right)} \right]}} > \left[ {\rho_{2} - G^{{\prime }} \left( X \right)} \right]^{2} \) and the result ρ 2 > ρ 1 follows from the strict concavity of the logistic growth G″ < 0.

Appendix 2

Proof that the bifurcation condition \( w = \frac{\det \left( J \right)}{{{\text{tr}} \left( J \right)}} \) (56) can be written as:

$$ \rho_{1} \rho_{2} \left[ {\rho_{1} + \rho_{2} - 2G^{{\prime }} \left( X \right)} \right] = \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right]\rho_{1} + \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right]\rho_{2} $$
(55)

Until now we have:

$$ {\text{tr}} \left( J \right) = \rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right) $$
(56)
$$ \begin{aligned} \det \left( J \right) & = G^{{\prime }} \left( X \right)\left( {\rho_{1} - G^{{\prime }} \left( X \right)} \right)\left( {\rho_{2} - G^{{\prime }} \left( X \right)} \right) - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left( {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right) \\ & \quad \left( {\rho_{2} - G^{{\prime }} \left( X \right)} \right) - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left( {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right)\left( {\rho_{1} - G^{{\prime }} \left( X \right)} \right) \\ \end{aligned} $$
(57)
$$ w = \rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] $$
(58)

First we multiply (56) by (58), and

$$ \begin{aligned} \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right] \cdot \left[ {\rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right]} \right] \\ = \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} } \right] - \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] - \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \\ \end{aligned} $$
(59)

Equating (57) = (59)

$$ \begin{array}{l} G^{{\prime }} \left( X \right)\left( {\rho_{1} - G^{{\prime }} \left( X \right)} \right)\left( {\rho_{2} - G^{{\prime }} \left( X \right)} \right) - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left( {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right)\left( {\rho_{2} - G^{{\prime }} \left( X \right)} \right) \hfill \\ \quad - \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left( {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right)\left( {\rho_{1} - G^{{\prime }} \left( X \right)} \right) \hfill \\ = \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} } \right] - \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \quad - \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \Leftrightarrow G^{{\prime }} \left( X \right)\left[ {\rho_{1} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{2} - G^{{\prime }} \left( X \right)} \right] = \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} } \right] \hfill \\ \quad - \rho_{1} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] - \rho_{2} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \Leftrightarrow \left[ {\rho_{1} + \rho_{2} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{1} \rho_{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{2} } \right] - G^{{\prime }} \left( X \right)\left[ {\rho_{1} - G^{{\prime }} \left( X \right)} \right]\left[ {\rho_{2} - G^{{\prime }} \left( X \right)} \right] \hfill \\ = \rho_{1} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] + \rho_{2} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \Leftrightarrow \left( {\rho_{1} + \rho_{2} } \right)\rho_{1} \rho_{2} - \left( {\rho_{1} + \rho_{2} } \right)\left[ {G^{{\prime }} \left( X \right)} \right]^{2} - \rho_{1} \rho_{2} G^{{\prime }} \left( X \right) + \left[ {G^{{\prime }} \left( X \right)} \right]^{3} \hfill \\ \quad - \rho_{1} \rho_{2} G^{{\prime }} \left( X \right) + \rho_{1} \left[ {G^{{\prime }} \left( X \right)} \right]^{2} + \rho_{2} \left[ {G^{{\prime }} \left( X \right)} \right]^{2} - \left[ {G^{{\prime }} \left( X \right)} \right]^{3} \hfill \\ = \rho_{1} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] + \rho_{2} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \Leftrightarrow \rho_{1} \rho_{2} \left( {\rho_{1} + \rho_{2} - 2G^{{\prime }} \left( X \right)} \right) = \rho_{1} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \lambda }\left[ {\lambda G^{{{\prime \prime }}} \left( X \right) + D^{{{\prime \prime }}} \left( X \right)} \right] + \rho_{2} \frac{{\partial \phi \left( {u,\nu } \right)}}{\partial \mu }\left[ {\mu G^{{{\prime \prime }}} \left( X \right) + \upsilon^{{{\prime \prime }}} \left( X \right)} \right] \hfill \\ \end{array} $$

which is the condition for cyclical strategies mentioned in the main text.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halkos, G.E., Papageorgiou, G.J. Environmental amenities as a renewable resource: management and conflicts. Environ Econ Policy Stud 18, 303–325 (2016). https://doi.org/10.1007/s10018-016-0150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10018-016-0150-9

Keywords

JEL Classification

Navigation