Skip to main content

Advertisement

Log in

A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Gliomas are the most common central nervous system neoplasms affecting children and can be both high- and low-grade. Paediatric low-grade glioma may be either World Health Organization grade I or grade II. Despite being classified as grade II diffuse astrocytoma, these neoplasms arising in children are distinct clinically and molecularly from their adult counterparts. They do not tend to progress to higher grade lesions and only rarely harbour an IDH mutation. Here, we review the clinical, histologic and molecular features of paediatric grade II diffuse glioma, highlighting their diagnostic criteria, prevalence across brain locations, their most common molecular features and how to test for them, and lastly the current status of therapeutic options available for their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285

    Article  PubMed  Google Scholar 

  2. Arora RS, Alston RD, Eden TO, Estlin EJ, Moran A, Birch JM (2009) Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro-oncology 13:223–234

    Google Scholar 

  3. Qaddoumi I, Sultan I, Gajjar A (2009) Outcome and prognostic feature in pediatric gliomas: a review of 6212 cases from the surveillance, epidemiology and end results (SEER) database. Cancer 115(24):5761–5770

    Article  PubMed  PubMed Central  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 world health organization classification of tumor of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  6. Van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120(3):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ et al (2014) Long-term outcome of 4040 children diagnosed with pediatric low-grade gliomas: an analysis of the surveillance epidemiology and end results (SEER) database. Pediatr Blood Cancer 61(7):1173–1179

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stokland T, Liu JF, Ironside JW, Ellison DW, Taylor R, Robinson KJ et al (2010) A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study. Neuro-oncology 12(12): 1257–1268.

    PubMed  PubMed Central  Google Scholar 

  9. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114(5):443–458

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98

    CAS  PubMed  Google Scholar 

  11. Peiffer J, Kleihues P (1999) Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol 9:241–245

    Article  CAS  PubMed  Google Scholar 

  12. Perry A, Wesseling P (2016) Histologic classification of gliomas. Handb Clin Neurol 134:71–95

    Article  PubMed  Google Scholar 

  13. Wesseling P, van den Bent M, Perry A (2015) Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:809–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freeman C, Farmer JP, Montes J (1998) Low-grade astrocytomas in children: evolving management strategies. Int J Radiat Oncol Biol Phys 41(5):979–987

    Article  CAS  PubMed  Google Scholar 

  15. Sievert A, Fisher M (2009) Pediatric low-grade gliomas. J Child Neurol 24(11):1397–1408

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang J, Wu G, Miller C, Tatevossian R, Dalton J, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bandopadhayay P, Ramkissoon L, Jain P, Bergthold G, Wala J, Zeid R et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    Article  CAS  PubMed  Google Scholar 

  20. Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30(1):7–11

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    Article  PubMed  Google Scholar 

  22. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125(2):353–355

    Article  CAS  PubMed  Google Scholar 

  23. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in glioma. N Engl J Med 360(21):2248

    Article  PubMed  Google Scholar 

  27. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Lyons-Weiler MA, LaFramboise WA et al (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Child’s Nerv Syst 27(1):87–94

    Article  Google Scholar 

  28. Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER et al (2012) Whole-exome sequencing identifies ATRX mutations as a key molecular determinant in lower-grade glioma. Oncotarget 3(10):1194–1203

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumours carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124(5):615–625.

    Article  CAS  PubMed  Google Scholar 

  30. Okita Y, Narita Y, Miyakita Y, Ohno M, Matsushita Y, Fukushima S et al (2012) IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int J Oncol 41:1325–1336

    CAS  PubMed  Google Scholar 

  31. Hartmann C, Hentschel B, Tatagiba M, Schramm J, Schnell O, Seidel C et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17:4588–4599

    Article  CAS  PubMed  Google Scholar 

  32. Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566

    Article  CAS  PubMed  Google Scholar 

  33. Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120:719–729

    Article  PubMed  Google Scholar 

  34. Mukasa A, Takayanagi S, Saito K, Shibahara J, Tabei Y, Furuya K et al (2012) Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci 103:587–592

    Article  CAS  PubMed  Google Scholar 

  35. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K et al (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177:2708–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaeckle KA, Decker PA, Ballman KV, Flynn PJ, Giannini C, Scheithauer BW et al (2011) Transformation of low grade glioma and correlation with outcome: an NCCTG database analysis. J Neurooncol 104(1):253–259

    Article  CAS  PubMed  Google Scholar 

  37. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  CAS  PubMed  Google Scholar 

  38. Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD (2009) A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem Biophys Res Commun 390:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arita H, Narita Y, Yoshida A et al (2015) Brain Tumor Pathol (2015). IDH1/2 mutation detection in gliomas. Brain Tumor Pathol. 32(2): 78–89

    Article  CAS  Google Scholar 

  40. Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M et al (2004) Population-based study on the incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 108(1):49–56

    Article  PubMed  Google Scholar 

  41. Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P et al (2002) Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytoma. Acta Neuropathol 103(3):267–275

    Article  CAS  PubMed  Google Scholar 

  42. Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro-oncology 12(7):621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-oncology 14(6):777–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioma. Nature 482(7384):226–231

    Article  CAS  PubMed  Google Scholar 

  45. Wu G, Diaz AK, Paugh BS, Ranklin SL, Ju B, Li Y et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng Y, Ng HK, Zhang SF, Ding M, Pang JC, Zheng J et al (1999) Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30(11):1284–1290

    Article  CAS  PubMed  Google Scholar 

  47. Antonelli M, Buttarelli FR, Arcella A, Nobusawa S, Donofrio V, Oghaki H et al (2010) Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high grade glioma. J Neurooncol 99(2):209–215

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–224

    Article  CAS  PubMed  Google Scholar 

  49. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    CAS  PubMed  Google Scholar 

  50. Vojtesek B, Bartek J, Midgley CA, Lane DP (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods 151(1–2):237–244

    Article  CAS  PubMed  Google Scholar 

  51. Maurer G, Tarkowski B, Baccarini M (2011) Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 30:3477–3488

    Article  CAS  PubMed  Google Scholar 

  52. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887

    Article  CAS  PubMed  Google Scholar 

  53. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC et al (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19:449–458

    Article  CAS  PubMed  Google Scholar 

  55. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70:512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Harold-Mende C et al (2011) Analysis of BRAFV600E in 1320 nervous system tumours reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma, and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  58. Tatevossian RD, Lawson AR, Forshew T, Hindley GF, Ellison DW, Sheer D (2010) MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol 222(3):509–514

    CAS  PubMed  Google Scholar 

  59. Lassaletta A, Mistry M, Arnoldo A, Ryall S, Guereirro Strucklin A, Krishnatry R et al (2016) Relationship of BRAF V600E and associated secondary mutations on survival rate and response to conventional therapies in childhood low-grade glioma. J Clin Oncol 34:suppl; abstr 10509

  60. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M et al (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17(14):4790–4798

    Article  CAS  PubMed  Google Scholar 

  61. Ida CM, Lambert SR, Rodriguez FJ, Voss JS, McCann BE, Seys AR et al (2012) BRAF alterations are frequent in cerebellar low-grade astrocytomas with diffuse growth pattern. J Neuropathol Exp Neurol 71:631–639

    Article  CAS  PubMed  Google Scholar 

  62. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181

    Article  CAS  PubMed  Google Scholar 

  63. Basto D, Trovisco V, Lopes JM, Martins A, Pardal F, Soares P et al (2005) Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol 109:207–210

    Article  CAS  PubMed  Google Scholar 

  64. Knobbe CB, Reifenberger J, Reifenberger G (2004) Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 108:467–470

    Article  CAS  PubMed  Google Scholar 

  65. Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR et al (2011) BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS ONE 6:17948

    Article  CAS  Google Scholar 

  66. Lin A, Rodriguez FJ, Karajannis MA, Williams SC, Legault G, Zagzag D et al (2012) BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405

    Article  CAS  PubMed  Google Scholar 

  68. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 380(9839):358–365

    Article  CAS  Google Scholar 

  69. Kiernan MW (2014) Targeting BRAF in pediatric brain tumors. Am Soc Clin Oncol Educ Book 2014:E436–E340

    Article  Google Scholar 

  70. Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH et al (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytoma. Neuro-oncology 16(10):1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G et al (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19

    Article  CAS  PubMed  Google Scholar 

  72. Tian Y, Rich BE, Vena N, Craig JM, Macconaill LE, Rajaram V et al (2011) Detection of KIAA1549-BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. J Mol Diagn 13(6): 669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R (2016) Targeted detection of genetic alternations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in pediatric thalamic glioma. Acta Neuropathol Commun 4(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Liggett W, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16(3):1197–1206

    Article  CAS  PubMed  Google Scholar 

  75. Ruas M, Peter G. (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta. 1378(2):115–177

    Google Scholar 

  76. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  CAS  PubMed  Google Scholar 

  77. Ivanchuk SM, Mondal S, Dirks PB, Rutka JT (2001) The INK4A/ARF locus: role in cell cycle control and apoptosis and implications for glioma growth. J Neurooncol 51:219–229

    Article  CAS  PubMed  Google Scholar 

  78. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30):3999–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121(3):407–420

    Article  CAS  PubMed  Google Scholar 

  82. Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119:641–649

    Article  CAS  PubMed  Google Scholar 

  83. Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M et al (2007) Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol 25:682–689

    Article  CAS  PubMed  Google Scholar 

  84. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high grade glioma. J Clin Oncol 33(9):1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G et al (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G et al (1997) Detection of p16gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol 56(9):999–1008

    Article  CAS  PubMed  Google Scholar 

  87. Chung CT, Santos Gda C, Hwang DM, Ludkovski O, Pintilie M, Squire JA et al (2010) FISH assay development for the detection of p16/CDKN2A deletion in malignant pleural mesothelioma. J Clin Pathol 63(7):630–634

    Article  PubMed  PubMed Central  Google Scholar 

  88. Purkait S, Jha P, Sharma M, Suri V, Sharma M, Kale S et al (2013) CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology 33(4):405–412

    Article  CAS  PubMed  Google Scholar 

  89. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  90. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffett E et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Orillac C, Thomas C, Dastagirzada Y, Hildago ET, Golfinos JG, Zagzag D. (2016) Pilocytic astrocytoma and glioneuronal tumor with histone H3 K27M mutation. Acta Neuropathol Commun 4(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gessi M, Capper D, Sahm F, Huang K, von Deimling A, Tippelt S et al (2016) Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathol 132(4):635–637

    Article  PubMed  Google Scholar 

  94. Gessi M, Gielen GH, Dreschmann V, Waha A, Pietsch T (2015) High frequency of H3F3A (K27M) mutations characterizes pediatric and adult high-grade gliomas of the spinal cord. Acta Neuropathol 130(3):435–437

    Article  PubMed  Google Scholar 

  95. Buczkowicz P, Bartels U, Bouffett E, Becher O, Hawkins C (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128(4):573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bechet D, Gielen GG, Korshunov A, Pfister SM, Rousso C, Faury D et al (2014) Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128(5):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Venneti S, Santi M, Felicella MM, Yarilin D, Phillips JJ, Sullivan LM et al. A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128(5):743–753

  98. Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson A, Ma J et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120(6):731–743

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ramkissoon L, Horowitz P, Craig J, Ramkissoon S, Rich B, Schumacher S et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci 110(20):8188–8193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S et al (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastoma. Proc Natl Acad Sci 102(40):14344–14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A et al (2012) Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337(6099):1231–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jones D, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Becker A, Scapulatempo-Neto C, Carloni A, Paulino A, Sheren J, Aisner D et al (2015) KIAA1549:BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. J Neuropathol Exp Neurol 74(7):743–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Merchant TE, Conklin HM, Wu S, Lustig RH, Xiong X (2009) Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol 27:3691–3697

    Article  PubMed  PubMed Central  Google Scholar 

  105. Krishnatry R, Zhukova N, Guerreiro Strucklin A, Pole J, Mistry M, Fried I et al (2016) Clinical and treatment factor determining long-term outcomes for adult survivors of childhood low-grade glioma: a population-based study. Cancer 122(8):1261–1269

    Article  PubMed  Google Scholar 

  106. Ater JL, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol 30(21):2641–2647

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gnekow AK, Falkenstein F, von Hornstein S, Zwiener I, Berkefeld S, Bison B et al (2012) Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-oncology 14(10):1265–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chintagumpala M, Eckel SP, Krailo M, Morris M, Adesina A, Packer R et al (2015) A pilot study using carboplatin, vincristine, and temozolomide in children with progressive/symptomatic low-grade glioma: a Children’s Oncology Group study. Neuro-oncology 17(8):1132–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nicholson HS, Kretschmar CS, Krailo M, Bernstein M, Kadota R, Fort D et al (2007) Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer 110(7):1542–1550

    Article  CAS  PubMed  Google Scholar 

  110. Bouffett E, Jakacki R, Goldman S, Hargrave D, Hawkins C, Shroff M, et.al (2012) Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol 30(12):1358–1363

    Article  CAS  Google Scholar 

  111. Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N. (2016) Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian pediatric brain tumor consortium study. J Clin Oncol 34 3537–3543

    Article  CAS  Google Scholar 

  112. Warren KE, Goldman S, Pollack IF, Fangusaro J, Schaiguevich P, Stewart CF et al (2011) Phase I trial of lenalidomide in pediatric patients with recurrent, refractory, or progressive primary CNS tumors: pediatric brain tumor consortium study PBTC-018. J Clin Oncol 29(3):324–329

    Article  CAS  PubMed  Google Scholar 

  113. Gururangan S, Fangusaro J, Poussaint TY, McLendon RE, Onar-Thomas A, Wu S et al (2014) Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas–a pediatric brain tumor consortium study. Neuro-oncology 16(2):310–317

    Article  CAS  PubMed  Google Scholar 

  114. Lutz M, Kapp M, Einsele H, Grigoleit GU, Mielke S (2014) Improvement of quality of life in patients with steroid-refractory chronic graft-versus-host disease treated with the mTOR inhibitor everolimus. Clin Transplant 28(12):1410–1415

    Article  CAS  PubMed  Google Scholar 

  115. Kieran MW, Yao X, Macy M, Leary S, Cohen K, MacDonald T et al (2014) A prospective multi-institutional phase II study of everolimus (RAD001), an mTor inhibitor, in pediatric patients with recurrent or progressive low-grade glioma. A POETIC consortium trial. Pediatr Blood Cancer 60:19–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Hawkins.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryall, S., Tabori, U. & Hawkins, C. A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathol 34, 51–61 (2017). https://doi.org/10.1007/s10014-017-0282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-017-0282-z

Keywords

Navigation