Skip to main content

Advertisement

Log in

Genetic landscape of meningioma

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Meningioma is the most common intracranial tumor, arising from arachnoid cells of the meninges. Monosomy 22 and inactivating mutations of NF2 are well-known genetic alterations of meningiomas. More recently, mutations in TRAF7, AKT1, KLF4, SMO, and PIK3CA were identified by next-generation sequencing. We here reviewed 553 meningiomas for the mutational patterns of the six genes. NF2 aberration was observed in 55 % of meningiomas. Mutations of TRAF7, AKT1, KLF4, PIK3CA, and SMO were identified in 20, 9, 9, 4.5, and 3 % of cases, respectively. Altogether, 80 % of cases harbored at least one of the genetic alterations in these genes. NF2 alterations and mutations of the other genes were mutually exclusive with a few exceptions. Clinicopathologically, tumors with mutations in TRAF7/AKT1 and SMO shared specific features: they were located in the anterior fossa, median middle fossa, or anterior calvarium, and most of them were meningothelial or transitional meningiomas. TRAF7/KLF4 type meningiomas showed different characteristics in that they occurred in the lateral middle fossa and median posterior fossa as well as anterior fossa and median middle fossa, and contained a secretory meningioma component. We also discuss the mutational hotspots of these genes and other genetic/cytogenetic alterations contributing to tumorigenesis or progression of meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17 Suppl 4:iv1–iv62

  2. Kotecha RS, Pascoe EM, Rushing EJ et al (2011) Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol 12:1229–1239

    Article  PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16 Suppl 4:iv1–63

  4. Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391

    Article  CAS  PubMed  Google Scholar 

  5. van Alkemade H, de Leau M, Dieleman EM et al (2012) Impaired survival and long-term neurological problems in benign meningioma. Neuro Oncol 14:658–666

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adeberg S, Hartmann C, Welzel T et al (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas–clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83:859–864

    Article  PubMed  Google Scholar 

  7. Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71:163–168

    Article  CAS  PubMed  Google Scholar 

  8. Mark J, Mitelman F, Levan G (1972) On the specificity of the G abnormality in human meningomas studied by the fluorescence technique. Acta Pathol Microbiol Scand A 80:812–820

    CAS  PubMed  Google Scholar 

  9. Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14:167–169

    Article  CAS  PubMed  Google Scholar 

  10. Fontaine B, Rouleau GA, Seizinger BR et al (1991) Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci 615:338–343

    Article  CAS  PubMed  Google Scholar 

  11. Rouleau GA, Merel P, Lutchman M et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521

    Article  CAS  PubMed  Google Scholar 

  12. Sanson M, Marineau C, Desmaze C et al (1993) Germline deletion in a neurofibromatosis type 2 kindred inactivates the NF2 gene and a candidate meningioma locus. Hum Mol Genet 2:1215–1220

    Article  CAS  PubMed  Google Scholar 

  13. Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800

    Article  CAS  PubMed  Google Scholar 

  14. MacCollin M, Ramesh V, Jacoby LB et al (1994) Mutational analysis of patients with neurofibromatosis 2. Am J Hum Genet 55:314–320

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruttledge MH, Sarrazin J, Rangaratnam S et al (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184

    Article  CAS  PubMed  Google Scholar 

  16. De Vitis LR, Tedde A, Vitelli F et al (1996) Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637

    Article  PubMed  Google Scholar 

  17. Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abedalthagafi M, Bi WL, Aizer AA et al (2016) Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 18:649–655

    Article  PubMed  Google Scholar 

  19. Louis DN, Ohgaki H, Wiestler OD et al (2016) WHO classification of tumours of the central nervous system. Lyon, France

    Google Scholar 

  20. Yuzawa S, Nishihara H, Yamaguchi S et al (2016) Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system. Mod Pathol 29:708–716

    Article  CAS  PubMed  Google Scholar 

  21. Brastianos PK, Horowitz PM, Santagata S et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reuss DE, Piro RM, Jones DT et al (2013) Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 125:351–358

    Article  CAS  PubMed  Google Scholar 

  23. Pang JC, Chung NY, Chan NH et al (2006) Rare mutation of PIK3CA in meningiomas. Acta Neuropathol 111:284–285

    Article  PubMed  Google Scholar 

  24. Bujko M, Kober P, Tysarowski A et al (2014) EGFR, PIK3CA, KRAS and BRAF mutations in meningiomas. Oncol Lett 7:2019–2022

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bouwmeester T, Bauch A, Ruffner H et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    Article  CAS  PubMed  Google Scholar 

  26. Scudiero I, Zotti T, Ferravante A et al (2012) Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem 287:6053–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Wang L, Zhang S et al (2013) Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep 29:283–287

    PubMed  Google Scholar 

  28. Carpten JD, Faber AL, Horn C et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444

    Article  CAS  PubMed  Google Scholar 

  29. Kim MS, Jeong EG, Yoo NJ et al (2008) Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 98:1533–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bleeker FE, Felicioni L, Buttitta F et al (2008) AKT1(E17K) in human solid tumours. Oncogene 27:5648–5650

    Article  CAS  PubMed  Google Scholar 

  32. Shoji K, Oda K, Nakagawa S et al (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101:145–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Askham JM, Platt F, Chambers PA et al (2010) AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 29:150–155

    Article  CAS  PubMed  Google Scholar 

  34. Beaver JA, Gustin JP, Yi KH et al (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19:5413–5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindhurst MJ, Sapp JC, Teer JK et al (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 365:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen MM Jr (2005) Proteus syndrome: an update. Am J Med Genet C Semin Med Genet 137c:38–52

    Article  PubMed  Google Scholar 

  37. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  38. Tetreault MP, Yang Y, Katz JP (2013) Kruppel-like factors in cancer. Nat Rev Cancer 13:701–713

    Article  CAS  PubMed  Google Scholar 

  39. Zhao W, Hisamuddin IM, Nandan MO et al (2004) Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zammarchi F, Morelli M, Menicagli M et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu T, Chen X, Zhang W et al (2016) KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ 23:207–215

    Article  CAS  PubMed  Google Scholar 

  42. Buttitta F, Felicioni L, Barassi F et al (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355

    Article  CAS  PubMed  Google Scholar 

  43. Qiu W, Schonleben F, Li X et al (2006) PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res 12:1441–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94:455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oda K, Stokoe D, Taketani Y et al (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673

    Article  CAS  PubMed  Google Scholar 

  46. Campbell IG, Russell SE, Choong DY et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681

    Article  CAS  PubMed  Google Scholar 

  47. Schonleben F, Qiu W, Ciau NT et al (2006) PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 12:3851–3855

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikenoue T, Kanai F, Hikiba Y et al (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567

    Article  CAS  PubMed  Google Scholar 

  50. Reifenberger J, Wolter M, Weber RG et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    CAS  PubMed  Google Scholar 

  51. Lam CW, Xie J, To KF et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18:833–836

    Article  CAS  PubMed  Google Scholar 

  52. Jones DT, Jager N, Kool M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pugh TJ, Weeraratne SD, Archer TC et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bacci C, Sestini R, Provenzano A et al (2010) Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics 11:73–80

    Article  CAS  PubMed  Google Scholar 

  55. Christiaans I, Kenter SB, Brink HC et al (2011) Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas. J Med Genet 48:93–97

    Article  CAS  PubMed  Google Scholar 

  56. Melean G, Velasco A, Hernandez-Imaz E et al (2012) RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas. Neurogenetics 13:267–274

    Article  CAS  PubMed  Google Scholar 

  57. Smith MJ, O’Sullivan J, Bhaskar SS et al (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298

    Article  CAS  PubMed  Google Scholar 

  58. Smith MJ, Wallace AJ, Bennett C et al (2014) Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol 234:436–440

    Article  CAS  PubMed  Google Scholar 

  59. Evans LT, Van Hoff J, Hickey WF et al (2015) SMARCE1 mutations in pediatric clear cell meningioma: case report. J Neurosurg Pediatr 16:296–300

    Article  PubMed  Google Scholar 

  60. Raffalli-Ebezant H, Rutherford SA, Stivaros S et al (2015) Pediatric intracranial clear cell meningioma associated with a germline mutation of SMARCE1: a novel case. Childs Nerv Syst 31:441–447

    Article  PubMed  Google Scholar 

  61. Gerkes EH, Fock JM, den Dunnen WF et al (2016) A heritable form of SMARCE1-related meningiomas with important implications for follow-up and family screening. Neurogenetics 17:83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmitz U, Mueller W, Weber M et al (2001) INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer 84:199–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aavikko M, Li SP, Saarinen S et al (2012) Loss of SUFU function in familial multiple meningioma. Am J Hum Genet 91:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kijima C, Miyashita T, Suzuki M et al (2012) Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam Cancer 11:565–570

    Article  PubMed  Google Scholar 

  65. Wicking C, Smyth I, Bale A (1999) The hedgehog signalling pathway in tumorigenesis and development. Oncogene 18:7844–7851

    Article  CAS  PubMed  Google Scholar 

  66. Staal FJ, van der Luijt RB, Baert MR et al (2002) A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 86:1586–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lyons CJ, Wilson CB, Horton JC (1993) Association between meningioma and Cowden’s disease. Neurology 43:1436–1437

    Article  CAS  PubMed  Google Scholar 

  68. De Moura J, Kavalec FL, Doghman M et al (2010) Heterozygous TP53stop146/R72P fibroblasts from a Li–Fraumeni syndrome patient with impaired response to DNA damage. Int J Oncol 36:983–990

    PubMed  Google Scholar 

  69. Kanno H, Yamamoto I, Yoshida M et al (2003) Meningioma showing VHL gene inactivation in a patient with von Hippel–Lindau disease. Neurology 60:1197–1199

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura Y, Shimizu T, Ohigashi Y et al (2005) Meningioma arising in Werner syndrome confirmed by mutation analysis. J Clin Neurosci 12:503–506

    Article  PubMed  Google Scholar 

  71. Leblanc R (2000) Familial adenomatous polyposis and benign intracranial tumors: a new variant of Gardner’s syndrome. Can J Neurol Sci 27:341–346

    Article  CAS  PubMed  Google Scholar 

  72. Igaz P (2009) MEN1 clinical background. Adv Exp Med Biol 668:1–15

    Article  PubMed  Google Scholar 

  73. Abdel-Rahman MH, Pilarski R, Cebulla CM et al (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48:856–859

    Article  CAS  PubMed  Google Scholar 

  74. Dougherty MJ, Santi M, Brose MS et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  76. Kleinschmidt-DeMasters BK, Aisner DL, Birks DK et al (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sugimoto K, Ideguchi M, Kimura T et al (2016) Epithelioid/rhabdoid glioblastoma: a highly aggressive subtype of glioblastoma. Brain Tumor Pathol 33:137–146

    Article  CAS  PubMed  Google Scholar 

  78. Mordechai O, Postovsky S, Vlodavsky E et al (2015) Metastatic rhabdoid meningioma with BRAF V600E mutation and good response to personalized therapy: case report and review of the literature. Pediatr Hematol Oncol 32:207–211

    Article  PubMed  Google Scholar 

  79. Behling F, Barrantes-Freer A, Skardelly M et al (2016) Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol 11:55

    Article  PubMed  PubMed Central  Google Scholar 

  80. Forest F, Yvorel V, Vassal F et al (2015) BRAF V600 point mutation is not present in relapsing meningioma. Clin Neuropathol 34:164–165

    Article  PubMed  Google Scholar 

  81. Bello MJ, de Campos JM, Kusak ME et al (1994) Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9:296–298

    Article  CAS  PubMed  Google Scholar 

  82. Simon M, von Deimling A, Larson JJ et al (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701

    CAS  PubMed  Google Scholar 

  83. Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lamszus K, Kluwe L, Matschke J et al (1999) Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 110:103–110

    Article  CAS  PubMed  Google Scholar 

  85. Cai DX, Banerjee R, Scheithauer BW et al (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636

    Article  CAS  PubMed  Google Scholar 

  86. Aizer AA, Abedalthagafi M, Bi WL et al (2016) A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro Oncol 18:269–274

    Article  PubMed  Google Scholar 

  87. Sulman EP, Dumanski JP, White PS et al (1998) Identification of a consistent region of allelic loss on 1p32 in meningiomas: correlation with increased morbidity. Cancer Res 58:3226–3230

    CAS  PubMed  Google Scholar 

  88. Tabernero MD, Espinosa AB, Maillo A et al (2005) Characterization of chromosome 14 abnormalities by interphase in situ hybridization and comparative genomic hybridization in 124 meningiomas: correlation with clinical, histopathologic, and prognostic features. Am J Clin Pathol 123:744–751

    Article  CAS  PubMed  Google Scholar 

  89. Linsler S, Kraemer D, Driess C et al (2014) Molecular biological determinations of meningioma progression and recurrence. PLoS One 9:e94987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lusis EA, Watson MA, Chicoine MR et al (2005) Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 65:7121–7126

    Article  CAS  PubMed  Google Scholar 

  91. Zhang X, Gejman R, Mahta A et al (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abedalthagafi MS, Merrill PH, Bi WL et al (2014) Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5:10596–10606

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hasselblatt M, Nolte KW, Paulus W (2004) Angiomatous meningioma: a clinicopathologic study of 38 cases. Am J Surg Pathol 28:390–393

    Article  PubMed  Google Scholar 

  94. Ketter R, Kim YJ, Storck S et al (2007) Hyperdiploidy defines a distinct cytogenetic entity of meningiomas. J Neurooncol 83:213–221

    Article  PubMed  Google Scholar 

  95. Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simon M, Park TW, Koster G et al (2001) Alterations of INK4a(p16-p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158

    Article  CAS  PubMed  Google Scholar 

  97. Perry A, Banerjee R, Lohse CM et al (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12:183–190

    CAS  PubMed  Google Scholar 

  98. Goutagny S, Nault JC, Mallet M et al (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24:184–189

    Article  CAS  PubMed  Google Scholar 

  99. Sahm F, Schrimpf D, Olar A et al (2016) TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108

  100. Huang FW, Hodis E, Xu MJ et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    Article  CAS  PubMed  Google Scholar 

  102. Rachakonda PS, Hosen I, de Verdier PJ et al (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA 110:17426–17431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang DS, Wang Z, He XJ et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reuss DE, Kratz A, Sahm F et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417

    Article  CAS  PubMed  Google Scholar 

  105. Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  CAS  PubMed  Google Scholar 

  106. Johanns TM, Fu Y, Kobayashi DK et al (2016) High incidence of TERT mutation in brain tumor cell lines. Brain Tumor Pathol 33:222–227

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  CAS  PubMed  Google Scholar 

  108. Kato Y (2015) Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 32:3–11

    Article  CAS  PubMed  Google Scholar 

  109. Sahm F, Bissel J, Koelsche C et al (2013) AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol 126:757–762

    Article  CAS  PubMed  Google Scholar 

  110. Buccoliero AM, Gheri CF, Castiglione F et al (2007) Merlin expression in secretory meningiomas: evidence of an NF2-independent pathogenesis? Immunohistochemical study. Appl Immunohistochem Mol Morphol 15:353–357

    Article  PubMed  Google Scholar 

  111. Pavelin S, Becic K, Forempoher G et al (2014) The significance of immunohistochemical expression of merlin, Ki-67, and p53 in meningiomas. Appl Immunohistochem Mol Morphol 22:46–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shigeru Yamaguchi for providing the radiological images of patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayaka Yuzawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuzawa, S., Nishihara, H. & Tanaka, S. Genetic landscape of meningioma. Brain Tumor Pathol 33, 237–247 (2016). https://doi.org/10.1007/s10014-016-0271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-016-0271-7

Keywords

Navigation