Skip to main content
Log in

Exponentially Convergent Receding Horizon Strategy for Constrained Optimal Control

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Receding horizon control has been a widespread method in industrial control engineering as well as an extensively studied subject in control theory. In this work, we consider a lag L receding horizon strategy that applies the initial L optimal controls from each quadratic program to each receding horizon. We investigate a discrete-time and time-varying linear-quadratic optimal control problem that includes a nonzero reference trajectory and constraints on both state and control. We prove that, under boundedness and controllability conditions, the solution obtained by the receding horizon strategy converges to the solution of the full problem interval exponentially fast in the length of the receding horizon for some lag L. The exponential rate of convergence provides a systematic way of choosing the receding horizon length given a desired accuracy level. We illustrate our theoretical findings using a small, synthetic production cost model with real demand data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellingham, J., Richards, A., How, J.P.: Receding horizon control of autonomous aerial vehicles. In: American Control Conference, 2002. Proceedings of the 2002, vol. 5, pp. 3741–3746. IEEE (2002)

  2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  3. Bhattacharya, R., Balas, G.J., Kaya, A., Packard, A.: Nonlinear receding horizon control of F-16 aircraft. In: American Control Conference, 2001. Proceedings of the 2001, vol. 1, pp. 518–522. IEEE (2001)

  4. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 33, 575–582 (2009)

    Article  Google Scholar 

  5. Boccia, A., Grüne, L., Worthmann, K.: Stability and feasibility of state constrained MPC without stabilizing terminal constraints. Syst. Control Lett. 72, 14–21 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2013)

    MATH  Google Scholar 

  7. Dunbar, W.B., Caveney, D.S.: Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Trans. Autom. Control 57, 620–633 (2012)

    Article  MathSciNet  Google Scholar 

  8. Franz, R., Milam, M., Hauser, J.: Applied receding horizon control of the Caltech Ducted Fan. In: American Control Conference, 2002. Proceedings of the 2002, vol 5, pp. 3735–3740. IEEE (2002)

  9. Grüne, L.: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optim. 48, 1206–1228 (2009)

    Article  MathSciNet  Google Scholar 

  10. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Communications and Control Engineering. Springer, London (2011)

    Book  Google Scholar 

  11. Grüne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear MPC schemes with time varying control horizon. SIAM J. Control Optim. 48, 4938–4962 (2010)

    Article  MathSciNet  Google Scholar 

  12. Interconnection, P.: Estimated hourly load data. http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx. Accessed: 2017-07-23

  13. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Autom. Control 50, 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  14. Jadbabaie, A., Yu, J., Hauser, J.: Unconstrained receding-horizon control of nonlinear systems. IEEE Trans. Autom. Control 46, 776–783 (2001)

    Article  MathSciNet  Google Scholar 

  15. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations. J. Optim. Theory Appl. 57, 265–293 (1988)

    Article  MathSciNet  Google Scholar 

  16. Kwon, W., Pearson, A.: A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Trans. Autom. Control 22, 838–842 (1977)

    Article  MathSciNet  Google Scholar 

  17. Kwon, W.H., Bruckstein, A.M., Kailath, T.: Stabilizing state-feedback design via the moving horizon method. Int. J. Control 37, 631–643 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kwon, W.H., Han, S.H.: Receding Horizon Control: Model Predictive Control for State Models. Springer, London (2006)

    Google Scholar 

  19. Kwon, W.H., Lee, Y.S., Han, S.H.: General receding horizon control for linear time-delay systems. Automatica 40, 1603–1611 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS J. Comput. 27, 238–248 (2015)

    Article  MathSciNet  Google Scholar 

  21. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Autom. Control 35, 814–824 (1990)

    Article  MathSciNet  Google Scholar 

  22. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  23. Nocedal, J., Wright, S.: Numerical Optimization. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  24. Primbs, J.A., Nevistić, V.: Feasibility and stability of constrained finite receding horizon control. Automatica 36, 965–971 (2000)

    Article  MathSciNet  Google Scholar 

  25. Rawlings, J.B., Muske, K.R.: The stability of constrained receding horizon control. IEEE Trans. Autom. Control 38, 1512–1516 (1993)

    Article  MathSciNet  Google Scholar 

  26. Reble, M., Allgöwer, F.: Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems. Automatica 48, 1812–1817 (2012)

    Article  MathSciNet  Google Scholar 

  27. Richalet, J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: Applications to industrial processes. Automatica 14, 413–428 (1978)

    Article  Google Scholar 

  28. Sethi, S., Sorger, G.: A theory of rolling horizon decision making. Ann. Oper. Res. 29, 387–415 (1991)

    Article  MathSciNet  Google Scholar 

  29. Sideris, A., Rodriguez, L.A.: A Riccati Approach to Equality Constrained Linear Quadratic Optimal Control. In: Proceeding of the 2010 American Control Conference, pp. 5167–5172 (2010)

  30. Xu, W., Anitescu, M.: Exponentially accurate temporal decomposition for long-horizon linear-quadratic dynamic optimization. SIAM J. Optim. 28, 2541–2573 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zhang, W., Hu, J., Abate, A.: On the value functions of the discrete-time switched LQR problem. IEEE Trans. Autom. Control 54, 2669–2674 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Prof. V. Zavala for pointing us to references about stability issues in rolling horizon control. We thank the anonymous referee of [30] who suggested that we look into RHC as well as the referee of this paper for important comments about our assumptions and scope relative to [11]. This material was based upon work supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11347. M. A. acknowledges partial NSF funding through awards FP061151-01-PR and CNS-1545046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Anitescu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Also, PrePrint ANL/MCS-P9015-1017.

Appendix A: Proofs of Results in Sections 2 and 3

Appendix A: Proofs of Results in Sections 2 and 3

1.1 A.1 Proof of Proposition 2

For any \(x_{q}\in \mathbb {R}^{n}\), consider the standard linear-quadratic problem:

$$ \begin{array}{@{}rcl@{}} \min && \sum\limits_{k=q}^{n_{2}-1} {u_{k}^{T}}R_{k}u_{k}+{x_{k}^{T}}\hat{Q}_{k}x_{k}+x_{n_{2}}^{T}Q_{n_{2}}x_{n_{2}} \end{array} $$
(44a)
$$ \begin{array}{@{}rcl@{}} \text{s.t.} && x_{k+1}=\hat{A}_{k}x_{k}+\hat{B}_{k}u_{k}, \qquad q\le k\le n_{2}-1. \end{array} $$
(44b)

For kq, successively applying (44b) gives, for j ≥ 0,

$$ x_{q+j}-\left( \prod\limits_{l=0}^{j-1}\hat{A}_{q+l}\right)x_{q}=\left[\begin{array}{lll} \hat{B}_{q+j-1}&\hat{A}_{q+j-1}\hat{B}_{q+j-2}& {\ldots} \left( \prod\limits_{l=1}^{j-1}\hat{A}_{q+l}\right)\hat{B}_{q} \end{array}\right] \left[\begin{array}{cc} u_{q+j-1}\\ \vdots\\ u_{q} \end{array}\right], $$
(45)

and for j = t, (45) reduces to

$$ x_{q+t}-\left( \prod\limits_{l=0}^{t-1}\hat{A}_{q+l}\right)x_{q}=C_{q,t}\left[\begin{array}{cc} u_{q+t-1}\\ \vdots\\ u_{q} \end{array}\right]. $$

The index set being UCC(λC) implies that Cq,t is uniformly completely controllable and in particular that Cq,t has full row rank. Therefore, there exists \(\hat {u}=(\hat {u}_{q}^{T},\dots ,\hat {u}_{q+t-1}^{T})^{T}\) so that

$$ -\left( \prod\limits_{l=0}^{t-1}\hat{A}_{l}\right)x_{q}=C_{q,t}\left[\begin{array}{cc} \hat{u}_{q+t-1}\\ \vdots\\ \hat{u}_{q} \end{array}\right]. $$
(46)

Several \(\hat {u}\) satisfy this relationship; we consider the one defined by

$$ \hat{u}=-C_{q,t}^{T}\left( C_{q,t}C_{q,t}^{T}\right)^{-1}\left( \prod\limits_{l=0}^{t-1}\hat{A}_{q+l}\right)x_{q}. $$

Denote the corresponding states generated with \(\hat {u}_{q:q+t-1}\) as \(\hat {x}_{q:q+t}\). Then \(\hat {x}_{q+t}=\mathbf {0}\) by (46).

Lemma 1 implies that

$$ \begin{array}{@{}rcl@{}} &&\max\limits_{1\le j\le t}\left\|\left[\begin{array}{lll} \hat{B}_{q+j-1}&\hat{A}_{q+j-1}\hat{B}_{q+j-2}& {\ldots} \left( \prod\limits_{l=1}^{j-1}\hat{A}_{q+l}\right)\hat{B}_{q} \end{array}\right]\right\|_{2}\\ &&\le \max\limits_{1\le j\le t}\left( C_{B}+C_{A}C_{B}+\dots+C_{A}^{j-1}C_{B}\right)\\ &&\le \frac{C_{B}\left( 1-{C_{A}^{t}}\right)}{1-C_{A}}\stackrel{\Delta}{=}M. \end{array} $$

Then from Definition 6 and Lemma 1, we have

$$ \|\hat{u}\|\le \frac{M}{\lambda_{C}}{C_{A}^{t}}\|x_{q}\|. $$
(47)

From (45), we have, for 1 ≤ jt − 1,

$$ \|\hat{x}_{q+j}\|\le {C_{A}^{j}}\|x_{q}\|+M\|\hat{u}\|\le \left( {C_{A}^{j}}+\frac{M^{2}}{\lambda_{C}}{C_{A}^{t}}\right)\|x_{q}\|. $$
(48)

Now we let \(\hat {u}_{k}=\mathbf {0}\) for kq + t. Then it follows that \(\hat {x}_{k}=\mathbf {0}\) for kq + t. Also note that since (A. 1) is a standard linear-quadratic regulator problem, the optimal value is given by \({x_{q}^{T}}K_{q}x_{q}\) [2]. As a result, we have the following.

$$ \begin{array}{@{}rcl@{}} {x_{q}^{T}}K_{q}x_{q}&=&\min_{u_{k}}\sum\limits_{k=q}^{n_{2}-1}{x_{k}^{T}}\hat{Q}_{k}x_{k}+{u_{k}^{T}}R_{k}u_{k}+x_{n_{2}}^{T}Q_{n_{2}}x_{n_{2}}\\ &\le &\sum\limits_{k=q}^{n_{2}-1}\hat{x}_{k}^{T}\hat{Q}_{k}\hat{x}_{k}+\hat{u}_{k}^{T}R_{k}\hat{u}_{k}+\hat{x}_{n_{2}}^{T}Q_{n_{2}}\hat{x}_{n_{2}}\\ &\le &\sum\limits_{k=q}^{q+t-1}\hat{x}_{k}^{T}\hat{Q}_{k}\hat{x}_{k}+\hat{u}_{k}^{T}R_{k}\hat{u}_{k}\\ &\le &C_{Q}\sum\limits_{k=q}^{q+t-1}\|\hat{x}_{k}\|^{2}+C_{R}\sum\limits_{k=q}^{q+t-1}\|\hat{u}_{k}\|^{2}\\ &\overset{(47),~(48)}{\le} &C_{Q}\left( 1+\sum\limits_{i=1}^{t-1}\left( {C_{A}^{i}}+\frac{M^{2}}{\lambda_{C}}{C_{A}^{t}}\right)^{2}\right)\|x_{q}\|^{2}+C_{R}\frac{M^{2}C_{A}^{2t}}{{\lambda^{2}_{C}}}\|x_{q}\|^{2}. \end{array} $$

Letting

$$ \beta=C_{Q}\left( 1+\sum\limits_{i=1}^{t-1}\left( {C_{A}^{i}}+\frac{M^{2}}{\lambda_{C}}{C_{A}^{t}}\right)^{2}\right)+C_{R}\frac{M^{2}C_{A}^{2t}}{{\lambda^{2}_{C}}} $$

completes the proof. Note that β depends only on the quantities in Assumption 1, Definitions 1 and 6, and Lemma 1, which are independent of n1, n2, and the particular choice of \(\mathcal {I}\) given it is UDB(λH) and UCC(λC).

1.2 A.2 Proof of Proposition 3

Define \(L_{k}=-W_{k}^{-1}\hat {B}_{k}^{T}K_{k+1}\hat {A}_{k}\). Then from Lemma 5 and (5d) we have \(D_{k}=\hat {A}_{k}+\hat {B}_{k}L_{k}\). In [2] the recursion (15b) is shown to be equivalent to

$$ K_{k}={D_{k}}^{T}K_{k+1}D_{k}+\hat{Q}_{k}+{L_{k}}^{T}R_{k}L_{k}. $$
(49)

For qjn2 − 1, define xj+ 1 = Djxj. Then (49) and Proposition 2 imply that

$$ \begin{array}{@{}rcl@{}} {x_{j}^{T}}K_{j}x_{j}&\ge& x_{j+1}^{T}K_{j+1}x_{j+1}+{x_{j}^{T}}\hat{Q}_{j}x_{j}\\ &\stackrel{\text{Prop}.~2}{\ge}& x_{j+1}^{T}K_{j+1}x_{j+1}+\frac{\lambda_{Q}}{\beta}{x_{j}^{T}}K_{j}x_{j}\\ &\stackrel{(49)}{\ge}& \left( 1+\frac{\lambda_{Q}}{\beta}\right)x_{j+1}^{T}K_{j+1}x_{j+1}. \end{array} $$
(50)

Here we used the bounds from Lemma 1 and the fact that \({x_{j}^{T}}K_{j}x_{j} \geq x_{j+1}^{T}K_{j+1}x_{j+1}\), as implied by (49) and the positive definiteness of \(\hat {Q}_{k}\) and Rk. Also we have

$$ {x_{j}^{T}}K_{j}x_{j}\stackrel{(49), \text{Lemma}~3}{\ge} {x_{j}^{T}}\hat{Q}_{j}x_{j}\ge \lambda_{Q}\|x_{j}\|^{2}. $$
(51)

As a result, for n2 − 1 ≥ jq, we have the following:

$$ \begin{array}{@{}rcl@{}} \left\|\prod\limits_{l=q}^{j}D_{l}x_{q}\right\|^{2}=\|x_{j+1}\|^{2}&\stackrel{(51)}{\le} & \frac{1}{\lambda_{Q}}x_{j+1}^{T}K_{j+1}x_{j+1}\\ &\stackrel{(50)}{\le} &\frac{1}{\lambda_{Q}(1+\lambda_{Q}/\beta)}{x_{j}^{T}}K_{j}x_{j}\\ &\stackrel{(50)}{\le} &\frac{1}{\lambda_{Q}}\left( \frac{1}{1+\lambda_{Q}/\beta}\right)^{j-q+1}{x_{q}^{T}}K_{q}x_{q}\\ &\stackrel{\text{Prop}.~2}{\le} &\frac{\beta}{\lambda_{Q}}\left( \frac{1}{1+\lambda_{Q}/\beta}\right)^{j-q+1}\|x_{q}\|^{2}, \end{array} $$

where the third inequality is obtained by repeatedly applying (50).

1.3 A.3 Proof of Lemma 9

Let

$$ L(y,\theta)=y^{T}Gy/2+y^{T}c(\theta)+\lambda^{T}(Ay-r)+\phi^{T}(By-d(\theta))+\theta^{T}F\theta +y^{T}c_{1}+\theta^{T}c_{2}+C $$

be the Lagrangian of problem (31). Then we have

$$ \nabla_{(y,\theta)}^{2}L=\left[\begin{array}{ll} G & \nabla_{\theta} c\\ \nabla_{\theta}^{T} c & \ast \end{array}\right]. $$

Since G and F are positive definite and LICQ holds at y0, then from [6, Theorem 5.53] and [6, Remark 5.55] we have

$$ \begin{array}{@{}rcl@{}} D_{p}y(\theta_{0})&=&\text{argmin}_{h\in S}\left[\begin{array}{ll} h^{T} & p^{T} \end{array}\right] \left( \nabla_{(y,\theta)}^{2}L(y_{0},\theta_{0})\right)\left[\begin{array}{ll} h\\ p \end{array}\right]\\ &=&\text{argmin}_{h\in S} h^{T}Gh/2+p^{T}\left( \nabla_{\theta}^{T}c(\theta_{0})\right)h, \end{array} $$

where S is the solution of the following linearized problem,

$$ \begin{array}{@{}rcl@{}} \min\limits_{s} &&\left( Gy_{0}+c(\theta_{0})+c_{1}\right)^{T} s+\left( \nabla_{\theta}^{T} c(\theta_{0}){y_{0}}+2F\theta_{0}+c_{2}\right)^{T}p\\ \text{s.t.} && Bs-\left( \nabla_{\theta} d(\theta_{0})\right)p=0, \\ && A_{I(y_{0},\theta_{0})}s \le 0, \end{array} $$

and S is given by

$$ S=\left\{s:~\left[\begin{array}{ll} B & -\nabla_{\theta} d(\theta_{0}) \end{array}\right]\left[\begin{array}{ll} s\\ p \end{array}\right] =0,~~ \left[\begin{array}{ll} A_{I_{+}(y_{0},\theta_{0},\bar{\lambda})} & 0 \end{array}\right]\left[\begin{array}{ll} s\\ p \end{array}\right]=0,~~ \left[\begin{array}{ll} A_{I_{0}(y_{0},\theta_{0},\bar{\lambda})} & 0 \end{array}\right]\left[\begin{array}{ll} s\\ p \end{array}\right]\le 0\right\}. $$

Thus the directional derivative Dpy(𝜃0) of y(𝜃) along direction p at 𝜃0 is the solution of the problem

$$ \begin{array}{@{}rcl@{}} \min\limits_{h} && h^{T}Gh/2+p^{T}\left( \nabla_{\theta}^{T}c(\theta_{0})\right)h\\ \text{s.t.} && Bh-\left( \nabla_{\theta} d(\theta_{0})\right)p=0, \\ && A_{I_{+}(y_{0},\theta_{0},\bar{\lambda})}h= 0,\\ && A_{I_{0}(y_{0},\theta_{0},\bar{\lambda})}h\le 0. \end{array} $$
(52)

Let I1 be the set of active inequality constraints of problem (52). Then \(I_{1}\subset I_{0}(y_{0},\theta _{0},\bar {\lambda })\), and let \(I^{\prime }(\theta _{0})=I_{1}\cup I_{+}(y_{0},\theta _{0},\bar {\lambda })\). The KKT condition of problem (52) is hence

$$ \widetilde{G} \stackrel{\Delta}{=}\left[\begin{array}{lll} G & A_{I^{\prime}(\theta_{0})}^{T} & B^{T}\\ A_{I^{\prime}(\theta_{0})} &0 &0 \\ B & 0& 0 \end{array}\right], \qquad \widetilde{G} \left[\begin{array}{ll} h^{\ast}\\ \phi_{1}^{\ast}\\ \phi_{2}^{\ast} \end{array}\right]=\left[\begin{array}{ll} -\nabla_{\theta} c(\theta_{0}) p\\ 0\\ \nabla_{\theta} d(\theta_{0}) p \end{array}\right] $$

for some Lagrange multipliers \(\phi _{1}^{\ast }\) and \(\phi _{2}^{\ast }\). Since LICQ holds at y0, rows of \(A_{I^{\prime }(\theta _{0})}\) and B are linearly independent. Together with the fact that G is positive definite, we have that \(\widetilde {G}\) is invertible. Denote the first row of \(\widetilde {G}^{-1}\) to be \(\left [\begin {array}{lll} p_{11} & p_{12} & p_{13} \end {array}\right ]\). Then, we have

$$ D_{p}y(\theta_{0})=h^{\ast}=\left( -p_{11}\nabla_{\theta} c(\theta_{0})+p_{13}\nabla_{\theta} d(\theta_{0})\right)p. $$

On the other hand, for problem (32) with \(I^{\prime }(\theta _{0})\) constructed above, the KKT condition is

$$ \widetilde{G}\left[\begin{array}{ll} y_{I^{\prime}(\theta_{0})}^{\ast}(\theta)\\ \psi_{1}^{\ast}\\ \psi_{2}^{\ast} \end{array}\right]=\left[\begin{array}{ll} -c(\theta)\\ r^{\prime}\\ d(\theta) \end{array}\right], $$

for some Lagrange multipliers \(\psi _{1}^{\ast }\) and \(\psi _{2}^{\ast }\). Since \(\widetilde {G}\) is invertible, we have \(y_{I^{\prime }(\theta _{0})}^{\ast }(\theta )=-p_{11}c(\theta )+p_{12}r^{\prime }+p_{13}d(\theta )\). It follows that

$$ \left.\frac{dy_{I^{\prime}(\theta_{0})}^{\ast}(\theta)}{d\theta}\right|_{\theta=\theta_{0}}=-p_{11}\nabla_{\theta} c(\theta_{0})+p_{13}\nabla_{\theta} d(\theta_{0}). $$

As a result, we have

$$ D_{p}y(\theta_{0})=\left( \left.\frac{dy_{I^{\prime}(\theta_{0})}^{\ast}(\theta)}{d\theta}\right|_{\theta=\theta_{0}}\right)p, $$

which proves the claim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Anitescu, M. Exponentially Convergent Receding Horizon Strategy for Constrained Optimal Control. Vietnam J. Math. 47, 897–929 (2019). https://doi.org/10.1007/s10013-019-00375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-019-00375-1

Keywords

Mathematics Subject Classification (2010)

Navigation