Skip to main content
Log in

The Adaptive Parameter Control Method and Linear Vector Optimization

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The question of constructing a set of equidistant points, with a given small approximate distance, in the efficient and weakly efficient frontiers of a linear vector optimization problem of a general form, is considered in this paper. It is shown that the question can be solved by combining Pascoletti–Serafini’s scalarization method (1984) and Eichfelder’s adaptive parameter control method (2009) with a sensitivity analysis formula in linear programming, which was obtained by J. Gauvin (2001). Our investigation shows that one can avoid the strong second-order sufficient condition used by G. Eichfelder, which cannot be imposed on linear vector optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global. Optim. 13, 1–24 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benson, H. P.: Hybrid approach for solving multiple-objective linear programs in outcome space. J. Optim. Theory. Appl. 98, 17–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer-Verlag, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eichfelder, G.: Multiobjective bilevel optimization. Math. Program., Ser. A 123, 419–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gauvin, J.: Formulae for the sensitivity analysis of linear programming problems. In: Lassonde, M (ed.) Approximation, Optimization, Economics, Mathematical, pp 117–120. Physica-Verlag, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Gerstewitz, Chr. [Tammer, Chr.]: Nichtkonvexe Dualitat in der Vektoroptimierung. (German) [Nonconvex duality in vector optimization] Wiss. Z. Tech. Hochsch. Leuna-Merseburg 25, 357–364 (1983)

  9. Hamel, A.H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. http://carma.newcastle.edu.au/jon/Preprints/Books/CUP/CUPold/acrm.pdf

  10. Helbig, S.: An interactive algorithm for nonlinear vector optimization. Appl. Math. Optim. 22, 147–151 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helbig, S.: An algorithm for quadratic vector optimization problems. Z. Angew. Math. Mech. 70, T751—T753 (1990)

    MathSciNet  Google Scholar 

  12. Helbig, S.: On a constructive approximation of the efficient outcomes in bicriterion vector optimization. J. Global Optim. 5, 35–48 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoa, T.N., Huy, N.Q., Phuong, T.D., Yen, N.D.: Unbounded components in the solution sets of strictly quasiconcave vector maximization problems. J. Global Optim. 37, 1–10 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huong, N.T.T., Yen, N.D.: The Pascoletti–Serafini scalarization scheme and linear vector optimization. J. Optim. Theory Appl. 162, 559–576 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam–New York–Oxford (1979)

    MATH  Google Scholar 

  16. Luc, D.T.: Theory of Vector Optimization. Springer-Verlag, Berlin–Heidelberg (1989)

    Book  Google Scholar 

  17. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  19. Sterna-Karwat, A.: Continuous dependence of solutions on a parameter in a scalarization method. J. Optim. Theory Appl. 55, 417–434 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sterna-Karwat, A.: Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method. J. Aust. Math. Soc. Ser. A 42, 353–364 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of N. T. T. Huong is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2014.39 and supported in part by Department of Information Technology, Le Qui Don University. The research of N. D. Yen is funded by the Vietnam Institute for Advanced Study in Mathematics (VIASM) and supported in part by Institute of Mathematics, Vietnam Academy of Science and Technology. The authors would like to thank the two anonymous referees for their very careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dong Yen.

Additional information

Dedicated to Professor Nguyen Khoa Son on the occasion of his sixty-fifth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thu Huong, N.T., Yen, N.D. The Adaptive Parameter Control Method and Linear Vector Optimization. Vietnam J. Math. 43, 471–486 (2015). https://doi.org/10.1007/s10013-015-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-015-0144-0

Keywords

Mathematics Subject Classification (2010)

Navigation