Skip to main content
Log in

Extrusion of the bimetallic aluminum-magnesium rods and tubes

Strangpressen von bimetallischen Aluminium-Magnesium-Rundprofilen und -Rohren

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

On the basis of theoretical and experimental studies the complex influence of process conditions such as the geometric characteristics of the billet and the tool were investigated regarding the extrusion of bimetallic rods and tubes. As a core material magnesium alloys of the Mg-Al-Zn system and as shell materials aluminum and its alloys of the Al-Mg-Si and Al-Zn-Mg were extruded. An increase in the strength properties of the aluminum alloy shell—compared to the core of a magnesium alloy—increases the inhomogeneity of the speed distribution of the metal flow resulting in defects. A sustainable processing can be established by the extrusion of bimetallic rods which consist of an Mg-Al-Zn-Mn core and an Al-Mg-Si shell.

Zusammenfassung

Der komplexe Einfluss von Prozessbedingungen wie z.B. die Pressbolzen- und Matrizengeometrie beim Verbundstrangpressen von Voll- und Hohlprofilen wurde anhand von experimentellen und numerischen Untersuchungen analysiert. Als Kernmaterial wurden Legierungen des Mg-Al-Zn-Systems und als Hüllmaterial Al-Mg-Si- bzw. Al-Zn-Mg-Legierungen stranggepresst. Eine Erhöhung der Festigkeit des Hüllmaterials – im Vergleich zum Kernmaterial – steigert die Inhomogenität der Geschwindigkeitsverteilung und führt zu Defekten. Stabile Pressbedingungen können beim Verbundstrangpressen von Mg-Al-Zn-Mn-Legierungen als Kernmaterial und Al-Mg-Si-Legierungen als Hüllmaterial erzielt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gil’dergorn MS (1981) Osnovy teorii sovmestnogo pressovanija raznoprochnyh metallov i splavov. Metallurgija, Moskva

    Google Scholar 

  2. Chepurko MI, Ostrenko VJa, Kogadeev AN et al. (1986) Proizvodstvo bimetallicheskih trub i prutkov. Metallurgija, Moskva

    Google Scholar 

  3. Golovanenko SA, Meandrov LV (1966) Proizvodstvo bimetallov. Metallurgija, Moskva

    Google Scholar 

  4. Korol’ VK, Gil’dengorn MS (1970) Osnovy tehnologii proizvodstva mnogoslojnyh metallov. Metallurgija, Moskva

    Google Scholar 

  5. Kobelev AG, Potapov IN, Kuznecov EV (1991) Tehnologija sloistyh metallov. Metallurgija, Moskva

    Google Scholar 

  6. Hwang YM, Hwang TF (2002) An investigation into the plastic deformation behavior within a conical die during composite rod extrusion. J Mater Process Technol 121:226–233

    Article  Google Scholar 

  7. Lehmann T, Stockmann M, Naumann J (2009) Experimental and numerical investigations of Al/Mg-compound specimens under load in an extended temperature range. FME Trans 37:1–8

    Google Scholar 

  8. Riemelmose F, Kilian H, Widlicki P, Thedja WW (2007) Co-Extrusion von Aluminium Magnesium Verbundwerkstoffen. Strangpressen: Tagungsband des Symposiums Strangpressen des Fachausschusses Strangpressen der DGM 248–257

  9. Shherba VN (2001) Pressovanie aljuminievyh splavov. Intermet inzhiniring, Moskva

    Google Scholar 

  10. Forge 2D and 3D (2008). http://www.transvalor.com/forge_gb.php

  11. Dyja HS, Banaszek GA, Grynkevych VA, Danchenko VN (2004) Modelowanie procesow kucia swobodnego: seria “Metalurgia”, vol 42. Politechnika, Czestochowa, p 337–355

  12. Henry S (2010) Applied metal forming including FEM analysis. Cambridge University Press, New York, p 477

  13. Flitta I, Sheppard T (2003) Nature of friction in extrusion process and its effect on material flow. Mater Sci Technol 19:837–846

    Article  Google Scholar 

  14. Danchenko VN, Dyja X, Golovko AN, Beljaev SM (2011) Issledovanie vlijanija geometricheskih harakteristik zagotovki i matricy na formoizmenenie pri pressovanii bimetallicheskih aljuminievo-magnievyh prutkov. Obrabotka materialov davleniem: Sb. nauchn. tr. 2:107–112

  15. Grudev AP, Zil'berg JuV, Tilik VT (1982) Trenie i smazki pri obrabotke metallov davleniem: spravochnik. Metallurgija, Moskva

    Google Scholar 

  16. Klimenko PL, Danchenko VN (2007) Kontaktnye naprjazhenija pri prokatke. Porogi, Dnepropetrovsk

    Google Scholar 

  17. Golovko AN, Milenin AA, Gridin AJu, Kojuda VA (2005) Opredelenie reologicheskih svojstv aljuminievogo splava AD31 pri gorjachej deformacii. Metall i lit’e Ukrainy 6:50–52

    Google Scholar 

  18. Hensel A, Spittel T (1978) Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Verlag Grundstoffindustrie, Leibzig

    Google Scholar 

  19. Spittel M, Spittel T (2009): Metal forming data of ferrous alloys. In: Landolt-Börnstein, Group VIII advanced materials and technologies, vol 2C, Springer, Berlin

    Google Scholar 

  20. Behrens BA, Tekkaya AE, Kosch KG, Foydl A, Kammler M, Jäger A (2014) Manufacturing of steel-reinforced aluminum parts by co-extrusion and subsequent forging. Key Eng Mater 585:149–156

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the coworkers of the Institut für Umformtechnik und Umformmaschinen IFUM of the Leibniz Universität Hannover for the supported material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nürnberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovko, O., Bieliaiev, S., Nürnberger, F. et al. Extrusion of the bimetallic aluminum-magnesium rods and tubes. Forsch Ingenieurwes 79, 17–27 (2015). https://doi.org/10.1007/s10010-015-0184-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-015-0184-3

Keywords

Navigation