Skip to main content

Advertisement

Log in

Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the current work, the effect of aniline concentration on the polymerization process and supercapacitive behavior of graphene oxide/multiwalled carbon nanotubes/polyaniline (GMP) nanocomposites were studied. Based on the obtained results, GMP nanocomposite with 0.5 M aniline (GMP5) was selected as the optimum concentration in terms of high current density and high specific capacitance. Nafion-based ionic polymer-free metal composite (IPFMC) supercapacitor was fabricated for the GMP5 nanocomposite. Solid-state symmetric supercapacitor was made after spraying of GMP5 in. on both sides of Nafion membrane. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge (CD), and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M Na2SO4.The specific capacitance of 383.25 F g−1 (326 mF cm−2) and 527.5 F g−1 (42 mF cm−2) was obtained for the GMP5 in solid-state supercapacitor and three-electrode cell at a scan rate of 10 mV s−1, respectively. The maximum energy and power densities of 53.64 and 1777.4 W kg−1 were obtained for the IPFMC-based supercapacitor.

Schematic of the solid-state supercapacitor based on the GMP5 nanocomposite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hosseini MG, Shahryari E (2016) Performance of polyaniline/manganese oxide-MWCNT nanocomposites as supercapacitors. Iran Chem Commun 3:67–77

    Google Scholar 

  2. Hosseini MG, Shahryari E, Najjar R, Ahadzadeh I (2015) Study of supercapacitive behavior of polyaniline/manganese oxide-carbon black nanocomposites based electrodes. Int J Nanosci Nanotechnol 11:147–157

    Google Scholar 

  3. Cheng L, Li H-q, Xia Y-y (2006) A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. J Solid State Electrochem 10(6):405–410

    Article  CAS  Google Scholar 

  4. Parra-Elizondo V, Escobar-Morales B, Morales E, Pacheco-Catalán D (2016) Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor. J Solid State Electrochem 21(4):975–985

  5. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721

    Article  CAS  Google Scholar 

  6. Zhang Y, Si L, Zhou B, Zhao B, Zhu Y, Zhu L, Jiang X (2016) Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chem Eng J 288:689–700

    Article  CAS  Google Scholar 

  7. Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195(17):5814–5819

    Article  CAS  Google Scholar 

  8. Xu D, Xu Q, Wang K, Chen J, Chen Z (2014) Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. Appl Mat Interfaces 6:200–209

    Article  CAS  Google Scholar 

  9. Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, Dou SX (2011) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ Sci 4(5):1855

    Article  CAS  Google Scholar 

  10. Xia X, Lei W, Hao Q, Wang W, Wang X (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261

    Article  CAS  Google Scholar 

  11. Khalid M, Tumelero MA, Pasa AA (2015) Asymmetric and symmetric solid-state supercapacitors based on 3D interconnected polyaniline-carbon nanotube framework. RSC Adv 5(76):62033–62039

    Article  CAS  Google Scholar 

  12. Vermisoglou EC, Giannakopoulou T, Romanos GE, Boukos N, Giannouri M, Lei C, Lekakou C, Trapalis C (2015) Non-activated high surface area expanded graphite oxide for supercapacitors. Appl Surf Sci 358(Part A):110–121

    Article  CAS  Google Scholar 

  13. Lazzari M, Soavi F, Mastragostino M (2009) Dynamic pulse power and energy of ionic-liquid-based supercapacitor for HEV application. J Electrochem Soc 156(8):A661–A666

  14. Fan W, Miao Y-E, Zhang L, Huang Y, Liu T (2015) Porous graphene-carbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors. RSC Adv 5(39):31064–31073

    Article  CAS  Google Scholar 

  15. Mousa MA, Khairy M, Shehab M (2016) Nanostructured ferrite/graphene/polyaniline using for supercapacitor to enhance the capacitive behavior. J Solid State Electrochem 21(4):995–1005

  16. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  17. Wang R, Wu Q, Zhang X, Yang Z, Gao L, Ni J, Tsui OKC (2016) Flexible supercapacitors based on a polyaniline nanowire-infilled 10 nm-diameter carbon nanotube porous membrane by in situ electrochemical polymerization. J Mater Chem A 4(32):12602–12608

  18. Kurig H, Vestli M, Tõnurist K, Jänes A, Lust E (2012) Influence of room temperature ionic liquid anion chemical composition and electrical charge delocalization on the supercapacitor properties. J Electrochem Soc 159(7):A944–A951

    Article  CAS  Google Scholar 

  19. Khosrozadeh A, Xing M, Wang Q (2015) A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl Energy 153:87–93

    Article  CAS  Google Scholar 

  20. Shabani Shayeh J, Ehsani A, Ganjali MR, Norouzi P, Jaleh B (2015) Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Appl Surf Sci 353:594–599

    Article  CAS  Google Scholar 

  21. Zhou H, Chen H, Luo S, Lu G, Wei W, Kuang Y (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9(8):574–580

    Article  CAS  Google Scholar 

  22. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources 286:561–570

    Article  CAS  Google Scholar 

  23. Ma B, Zhou X, Bao H, Li X, Wang G (2012) Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J Power Sources 215:36–42

    Article  CAS  Google Scholar 

  24. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733

    Article  CAS  Google Scholar 

  25. Zhi M, Xiang C, Li J, Li M, Wu N (2012) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nano 5:72–88

    Google Scholar 

  26. Hosseini MG, Shahryari E (2017) A novel high-performance supercapacitor based on chitosan/GO-MWCNT/PANI. J Colloid Interface Sci 496:371–381

    Article  Google Scholar 

  27. Yoon S-B, Yoon E-H, Kim K-B (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196(24):10791–10797

    Article  CAS  Google Scholar 

  28. Lufrano F, Staiti P (2004) Conductivity and capacitance properties of a supercapacitor based on Nafion electrolyte in a nonaqueous system. Electrochem Solid-State Lett 7(11):A447–A450

    Article  CAS  Google Scholar 

  29. Hosseini MG, Rasouli H, Shahryari E, Naji L (2017) Electrochemical behavior of a Nafion-membrane-based solid-state supercapacitor with a graphene oxide–multiwalled carbon nanotube–polypyrrole nanocomposite. J Appl Polym Sci:44926

  30. Electroactive Polymer (EAP) (2004) Actuators as artificial muscles: reality, potential, and challenges, 2nd edition. SPIE PM136:1–816

  31. Naji L, Chudek JA, Abel EW, Baker RT (2013) Electromechanical behaviour of Nafion-based soft actuators. J Mater Chem B 1(19):2502–2514

    Article  CAS  Google Scholar 

  32. Hummers WS, Offman RE (1958) Preparation of graphitic oxide. J American Chem Soc 80(6):1339–1339

  33. Hosseini MG, Shahryari E Synthesis, characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline-electrode as supercapacitor. J Mater Sci & Technol 32:763–773

  34. Tang Y, Chen C, Ye YS, Xue Z, Zhou X, Xie X (2014) The enhanced actuation response of an ionic polymer-metal composite actuator based on sulfonated polyphenylsulfone. Polym Chem 5(20):6097–6107

    Article  CAS  Google Scholar 

  35. Naji L, Chudek JA, Baker RT (2008) Magnetic resonance imaging study of a soft actuator element during operation. Soft Matter 4(9):1879–1886

    Article  CAS  Google Scholar 

  36. Yan Y, Cheng Q, Pavlinek V, Saha P, Li C (2012) Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors. Electrochim Acta 71:27–32

    Article  CAS  Google Scholar 

  37. Mirmohseni A, Dorraji MSS, Hosseini MG (2012) Influence of metal oxide nanoparticles on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers. Electrochim Acta 70:182–192

    Article  CAS  Google Scholar 

  38. Chen C-M, Huang J-Q, Zhang Q, Gong W-Z, Yang Q-H, Wang M-Z, Yang Y-G (2012) Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2):659–667

    Article  CAS  Google Scholar 

  39. Golczak S, Kanciurzewska A, Fahlman M, Langer K, Langer JJ (2008) Comparative XPS surface study of polyaniline thin films. Solid State Ionics 179(39):2234–2239

    Article  CAS  Google Scholar 

  40. Xie B, Wang Y, Lai W, Lin W, Lin Z, Zhang Z, Zou P, Xu Y, Zhou S, Yang C, Kang F, Wong C-P (2016) Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 26:276–285

    Article  CAS  Google Scholar 

  41. Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger JC, Penner RM (2011) Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. ACS Nano 5(10):8275–8287

    Article  CAS  Google Scholar 

  42. Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  43. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic Plenum Publisher, New york

    Google Scholar 

  44. Mi H, Zhou J, Cui Q, Zhao Z, Yu C, Wang X, Qiu J (2014) Chemically patterned polyaniline arrays located on pyrolytic graphene for supercapacitors. Carbon 80:799–807

    Article  CAS  Google Scholar 

  45. Abdulhakeem B, Farshad B, Damilola M, Fatemeh T, Mopeli F, Julien D, Ncholu M (2014) Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Adv 4(73):39066–39072

    Article  CAS  Google Scholar 

  46. Ren G, Pan X, Bayne S, Fan Z (2014) Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71:94–101

    Article  CAS  Google Scholar 

  47. Taberna P, Simon P, Fauvarque J-F (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300

    Article  CAS  Google Scholar 

  48. Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22(23):11494–11502

    Article  CAS  Google Scholar 

  49. Zhao X, Chen C, Huang Z, Jin L, Zhang J, Li Y, Zhang L, Zhang Q (2015) Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv 5(81):66311–66317

    Article  CAS  Google Scholar 

  50. Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27(10):6458–6463

    Article  CAS  Google Scholar 

  51. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater 23(26):3353–3360

    Article  CAS  Google Scholar 

  52. Devarayan K, Lei D, Kim H-Y, Kim B-S (2015) Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chem Eng J 273:603–609

    Article  CAS  Google Scholar 

  53. Zhang L, Zhu P, Zhou F, Zeng W, Su H, Li G, Gao J, Sun R, Wong C-p (2016) Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano 10(1):1273–1282

    Article  CAS  Google Scholar 

  54. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  55. Yan D, Li Y, Liu Y, Zhuo R, Geng B, Wu Z, Wang J, Ren P, Yan P (2015) Design and influence of mass ratio on supercapacitive properties of ternary electrode material reduced graphene oxide@MnO2@ poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Electrochim Acta 169:317–325

    Article  CAS  Google Scholar 

  56. Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752

    Article  CAS  Google Scholar 

  57. Lu X, Dou H, Yang S, Hao L, Zhang L, Shen L, Zhang F, Zhang X (2011) Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim Acta 56(25):9224–9232

    Article  CAS  Google Scholar 

  58. Yan Y, Cheng Q, Zhu Z, Pavlinek V, Saha P, Li C (2013) Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. J Power Sources 240:544–550

    Article  CAS  Google Scholar 

  59. Gui D, Liu C, Chen F, Liu J (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl Surf Sci 307:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Iranian National Committee of Nanotechnology in Ministry of Science, Research and Technology and the office of the Vice Chancellor in Charge of Research of University of Tabriz. The authors would like to thank O. Mermer and A. Farzaneh for the assistance in the measurement of XPS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Ghasem Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.G., Shahryari, E. Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline. J Solid State Electrochem 21, 2833–2848 (2017). https://doi.org/10.1007/s10008-017-3606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3606-3

Keywords

Navigation