Skip to main content
Log in

Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel-based metal-organic framework ([Ni(4,4′-bpy)(tfbdc)(H2O)2], Ni-MOF) nanoparticles with the size of 45–250 nm were synthesized by a facile hydrothermal route in combination with a grinding treatment (4,4′-bpy = 4,4′-bipyridine, H2tfbdc = tetrafluoroterephthalic acid). The materials were characterized by elemental analysis, IR spectrum, thermogravimetric analysis, powder X-ray diffraction, X-ray photoelectron spectrum (XPS), transmission electron microscope (TEM), scanning electron microscope (SEM), and the Brunauer–Emmett–Teller (BET) surface. As electrode materials for supercapacitors, the Ni-MOF nanoparticles delivered a high specific capacitance of 2548 F g−1 in 1 M KOH solution at a current density of 1 A g−1. When applied as anode materials of Li-ion batteries, the Ni-MOF nanoparticles displayed a higher reversible capacity, a better cyclic stability, and a higher rate performance, which still maintained 406 mAh g−1 after 50 cycles at a current density of 50 mA g−1. The better electrochemical performances may be attributed to the unique structure feature, and short route for electrolyte/Li-ions diffusion in nanosized Ni-MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

  2. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  3. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Lin TQ, Chen IW, Liu FX, Yang CY, Bi H, Xu FF, Huang FQ (2015) Science 350:1508–1513

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon JM (2015) Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  6. Noorden RV (2014) Nature 507:26–28

    Article  Google Scholar 

  7. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  8. Whittingham MS (2014) Chem Rev 114:11414–11443

    Article  CAS  Google Scholar 

  9. Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2014) Chem Rev 114:11619–11635

    Article  CAS  Google Scholar 

  10. Sasidharachari K, Na B-K, Woo S-G, Yoon S, Cho KY (2016) J Solid State Electrochem 20:2873–2878

    Article  CAS  Google Scholar 

  11. Li YY, Zhang HY, Chen YM, Shi ZC, Cao XG, Guo ZP, Shen PK (2016) ACS Appl Mater Interfaces 8:197–207

    Article  CAS  Google Scholar 

  12. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:1230444–1123044

  13. Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  14. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982–986

    Article  CAS  Google Scholar 

  15. Liu J, Cheng ML, Yu LL, Chen SC, Shao YL, Liu Q, Zhai CW, Yin FX (2016) RSC Adv 6:52040–52047

    Article  CAS  Google Scholar 

  16. Wang HY, Wu Y, Leong CF, D’Alessandro DM, Zuo JL (2015) Inorg Chem 54:10766–10775

    Article  CAS  Google Scholar 

  17. Morozan A, Jaouen F (2012) Energy Environ Sci 5:9269–9290

    Article  CAS  Google Scholar 

  18. Ke FS, Wu YS, Deng H (2015) J Solid State Chem 223:109–121

    Article  CAS  Google Scholar 

  19. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  20. Díaz R, Gisela Orcajo M, Botas JA, Calleja G, Palma J (2012) Mater Lett 68:126–128

    Article  Google Scholar 

  21. Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Microporous Mesoporous Mater 153:163–165

    Article  CAS  Google Scholar 

  22. Lee DY, Shinde DV, Kim EK, Lee W, Oh IW, Shrestha NK, Lee JK, Han SH (2013) Microporous Mesoporous Mater 171:53–57

    Article  CAS  Google Scholar 

  23. Gong Y, Li J, Jiang PG, Li QF, Lin JH (2013) Dalton Trans 42:1603–1611

    Article  CAS  Google Scholar 

  24. Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) ACS Nano 8:7451–7457

    Article  CAS  Google Scholar 

  25. Yang J, Xiong P, Zheng C, Qiu H, Wei M (2014) J Mater Chem A 2:16640–16644

    Article  CAS  Google Scholar 

  26. Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) J Mater Chem A 2:19005–19010

    Article  CAS  Google Scholar 

  27. Kang L, Sun SX, Kong LB, Lang JW, Luo YC (2014) Chin Chem Lett 25:957–961

    Article  CAS  Google Scholar 

  28. Liu Q, Liu XX, Shi CD, Zhang Y, Feng X, Cheng ML, Su S, Gu J (2015) Dalton Trans 44:19175–19184

    Article  CAS  Google Scholar 

  29. Liu XX, Shi CD, Zhai CW, Cheng ML, Liu Q, Wang G (2016) ACS Appl Mater Interfaces 8:4585–4591

    Article  CAS  Google Scholar 

  30. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) J Am Chem Soc 137:4920–4923

    Article  CAS  Google Scholar 

  31. Li X, Cheng F, Zhang S, Chen J (2006) J Power Sources 160:542–547

    Article  CAS  Google Scholar 

  32. Férey G, Millange F, Morcrette M, Serre C, Doublet ML, Greneche JM, Tarascon JM (2007) Angew Chem Int Ed 46:3259–3263

    Article  Google Scholar 

  33. Saravanan K, Nagarathinam M, Balaya P, Vittal JJ (2010) J Mater Chem 20:8329–8335

    Article  CAS  Google Scholar 

  34. Nagarathinam M, Saravanan K, Phua EJH, Reddy MV, Chowdari BVR, Vittal JJ (2012) Angew Chem 124:5968–5972

    Article  Google Scholar 

  35. Xiang JF, Chang CX, Li M, Wu SM, Yuan LJ, Sun JT (2008) Cryst Growth Des 8:280–282

    Article  CAS  Google Scholar 

  36. Mao Y, Kong QY, Guo BK, Fang XP, Guo XW, Shen L, Armand M, Wang ZX, Chen LQ (2011) Energy Environ Sci 4:3442–3447

    Article  CAS  Google Scholar 

  37. Liu Q, Yu LL, Wang Y, Ji YZ, Horvat J, Cheng ML, Jia XY, Wang GX (2013) Inorg Chem 52:2817–2822

    Article  CAS  Google Scholar 

  38. Zhang Z, Yoshikawa H, Awaga K (2014) J Am Chem Soc 136:16112–16115

    Article  CAS  Google Scholar 

  39. Gou L, Hao LM, Shi YX, Ma SL, Fan XY, Xu L, Li DL, Wang K (2014) J Solid State Chem 210:121–124

    Article  CAS  Google Scholar 

  40. An T, Wang Y, Tang J, Wang Y, Zhang L, Zheng G (2015) J Colloid Interface Sci 445:320–325

    Article  CAS  Google Scholar 

  41. Fei H, Liu X, Li Z, Feng W (2015) Dalton Trans 44:9909–9914

    Article  CAS  Google Scholar 

  42. Lin Y, Zhang Q, Zhao C, Li H, Kong C, Shen C, Chen L (2015) Chem Commun 51:697–699

    Article  CAS  Google Scholar 

  43. Kaveevivitchai W, Jacobson AJ (2015) J Power Sources 278:265–273

    Article  CAS  Google Scholar 

  44. Zhao C, Shen C, Han W (2015) RSC Adv 5:20386–20389

    Article  CAS  Google Scholar 

  45. Maiti S, Pramanik A, Manju U, Mahanty S (2015) ACS Appl Mater Interfaces 7:16357–16363

    Article  CAS  Google Scholar 

  46. Shi CD, Xia QH, Xue X, Liu Q, Liu HJ (2016) RSC Adv 6:4442–4447

    Article  CAS  Google Scholar 

  47. Li C, Hu X, Lou X, Chen Q, Hu B (2016) Chem Commun 52:2035–2038

    Article  CAS  Google Scholar 

  48. Li C, Lou X, Shen M, Hu X, Guo Z, Wang Y, Hu B, Chen Q (2016) ACS Appl Mater Interfaces 8:15352–15360

    Article  CAS  Google Scholar 

  49. Shi C, Gao Y, Liu L, Song Y, Wang X, Liu HJ, Liu Q (2016) J Nanopart Res 18:371

    Article  Google Scholar 

  50. Chen S, Yeoh W, Liu Q, Wang G (2012) Carbon 50:4557–4565

    Article  CAS  Google Scholar 

  51. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW (2012) J Am Chem Soc 134:17388–17391

    Article  CAS  Google Scholar 

  52. Hulvey Z, Ayala E, Cheetham AK (2009) Z Anorg Allg Chem 635:1753–1757

    Article  CAS  Google Scholar 

  53. Liu S, Wang D, Pan S (eds) (1998) Analysis of X-ray photoelectron spectroscopy, Science Press, Beijing

  54. Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W (2014) Science 346:1356–1359

    Article  CAS  Google Scholar 

  55. Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) J Solid State Electrochem 18:1569–1584

    Article  CAS  Google Scholar 

  56. Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media

  57. Yan H, Bai J, Wang J, Zhang X, Wang B, Liu Q, Liu L (2015) CrystEngComm 15:10007–10015

    Article  Google Scholar 

  58. Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H, Zhang Z (2015) J Mater Chem A 3:17469–17478

    Article  CAS  Google Scholar 

  59. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  60. Zhang C, Shao D, Gao Q, Lu Y, Liu Z, Yu X, Fang Y, Chen D (2015) J Solid State Electrochem 19:1859–1866

    Article  CAS  Google Scholar 

  61. Thi TV, Rai AK, Gim J, Kim J (2015) J Power Sources 292:23–30

    Article  CAS  Google Scholar 

  62. Liu H, Wang G, Liu J, Qiao S, Ahn H (2011) J Mater Chem 21:3046–3052

    Article  CAS  Google Scholar 

  63. Armand M, Grugeon S, Vezin H, Laruelle S, Ribière P, Poizot P, Tarascon JM (2009) Nat Mater 8:120–125

    Article  CAS  Google Scholar 

  64. Lee HH, Park Y, Kim SH, Yeon SH, Kwak SK, Lee KT, Hong SY (2015) Adv Funct Mater 25:4859–4866

    Article  CAS  Google Scholar 

  65. Zhu Y, Guo H, Wu Y, Cao C, Tao S, Wu Z (2014) J Mater Chem A 2:7904–7911

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. Shi and X. Wang contributed equally to this work. We thank the National Natural Science Foundation of China (No. 20971060), the Project Funded by the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, the Natural Science Research Key Project of Jiangsu Colleges and Universities (No. 16KJA430005), and the Natural Science Foundation of State Key Laboratory of Coordination Chemistry for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Jiang Liu or Qi Liu.

Electronic supplementary material

ESM 1

(DOC 4595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Wang, X., Gao, Y. et al. Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21, 2415–2423 (2017). https://doi.org/10.1007/s10008-017-3591-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3591-6

Keywords

Navigation