Skip to main content
Log in

Nanomaterial-based electrochemical sensors for detection of glucose and insulin

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical sensors for the detection of specific biomolecules have attracted a lot of interest over the recent years due to their high sensitivity, selectivity, simple preparation and quick response. This article summarizes the recent progress related to the application of nanomaterials in electrochemical detection of glucose and insulin. We give an overview of electrode concepts based on nanomaterials for electrochemical non-enzymatic glucose detection and non-immune insulin detection and review the electrochemical performances and limitations of these sensors. The mechanisms of the electrocatalytic oxidation of glucose on different nanomaterial-based metallic electrodes are compared. Attention is also focused on schemes of insulin detection on selected nanoparticle-modified carbon electrodes. Finally, the review outlines perspectives of future developments in electrochemical detection of both biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li JP, Li SH, Yang CF (2012) Electrochemical biosensors for cancer biomarker detection. Electroanal 24:2213–2229

    Article  CAS  Google Scholar 

  2. Yagati AK, Choi Y, Park J, Choi JW, Jun HS, Cho S (2016) Silver nanoflower–reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosens Bioelectron 80:307–314

    Article  CAS  Google Scholar 

  3. Guo X, Deng H, Zhou H, Fan T, Gao Z (2015) Detection of glucose with a lamellar-ridge architectured gold modified electrode. Sensor Actuat B 206:721–727

    Article  CAS  Google Scholar 

  4. Deng H, Teo AKLT, Gao Z (2014) An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sensor Actuat B 191:522–528

    Article  CAS  Google Scholar 

  5. Ren YQ, Deng HM, Shen W, Gao ZQ (2013) A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem 85:4784–4789

    Article  CAS  Google Scholar 

  6. Martínez-Periñán E, Revenga-Parra M, Gennari M, Pariente F, Mas-Ballesté R, Zamora F, Lorenzo E (2016) Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sensor Actuat B 222:331–338

    Article  CAS  Google Scholar 

  7. Liu X, Lillehoj PB (2016) Embroidered electrochemical sensors for biomolecular detection. Lab Chip 16:2093–2098

    Article  CAS  Google Scholar 

  8. Krishnan R, Arora RP, Alexander M, White SM, Lamb MW, Foster CE, Choi B, Lakey JRT (2014) Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 35:891–898

    Article  CAS  Google Scholar 

  9. Tomas E, Zorzano A, Ruderman NB (2002) Exercise and insulin signaling: a historical perspective. J Appl Physiol 93:765–772

    Article  CAS  Google Scholar 

  10. Yu Y, Guo M, Yuan M, Liu W, Hu J (2016) Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin. Biosens Bioelectron 77:215–219

    Article  CAS  Google Scholar 

  11. Fotino N, Fotino C, Pileggi A (2015) Re-engineering islet cell transplantation. Pharmacol Res 98:76–85

    Article  CAS  Google Scholar 

  12. El-Ads EH, Galal A, Atta NF (2015) Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode – towards a novel non-enzymatic glucose sensor. J Electroanal Chem 749:42–52

    Article  CAS  Google Scholar 

  13. Galant AL, Kaufman RC, Wilson JD (2015) Glucose: detection and analysis. Food Chem 188:149–160

    Article  CAS  Google Scholar 

  14. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  15. Zhong GX, Zhang WX, Sun YM, Wei YQ, Lei Y, Peng HP, Liu AL, Chen YZ, Lin XH (2015) A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors Actuators B Chem 212:72–77

    Article  CAS  Google Scholar 

  16. Wang L, Zheng Y, Lu X, Li Z, Sun L, Song Y (2014) Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sensors Actuators B Chem 195:1–7

    Article  CAS  Google Scholar 

  17. Williams ME, Lacson E, Teng M, Ofsthun N, Lazarus JM (2006) Hemodialyzed type I and type II diabetic patients in the US: characteristics, glycemic control, and survival. Kidney Int 70:1503–1509

    Article  CAS  Google Scholar 

  18. Dikow R, Wasserhess C, Zimmerer K, Kihm LP, Schaier M, Schwenger V, Hardt S, Tiefenbacher C, Aatus H, Zeier M, Gross LM (2009) Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats. Basic Res Cardiol 104:571–579

    Article  CAS  Google Scholar 

  19. Chen X, Pan H, Liu H, Du M (2010) Nonenzymatic glucose sensor based on flower-shaped Au@ Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim Acta 56:636–643

    Article  CAS  Google Scholar 

  20. Steele JAM, Hallé JP, Poncelet D, Neufeld RJ (2014) Therapeutic cell encapsulation techniques and applications in diabetes. Adv Drug Deliver Rev 67:74–83

    Article  CAS  Google Scholar 

  21. Abdel Hameed RM (2013) Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R. Biosens Bioelectron 47:248–257

    Article  CAS  Google Scholar 

  22. Schutte E, Heerspink HJL, Lutgers HL, Bakker SJL, Vart P, Wolffenbuttel BH, Umanath K, Lewis JB, Zeeuw D, Gansevoort RT (2015) Serum bicarbonate and kidney disease progression and cardiovascular outcome in patients with diabetic nephropathy: a post hoc analysis of the RENAAL (Reduction of End Points in Non–Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan) study and IDNT (Irbesartan Diabetic Nephropathy Trial). Am J Kidney Dis 66:450–458

    Article  CAS  Google Scholar 

  23. Chen Y, Zhang H, Xue H, Hu X, Wang G, Wang C (2014) Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Mater Sci Eng 35:420–425

    Article  CAS  Google Scholar 

  24. Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    Article  CAS  Google Scholar 

  25. Sun A, Zheng J, Sheng Q (2012) A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids. Electrochim Acta 65:64–69

    Article  CAS  Google Scholar 

  26. Shen C, Su J, Li X, Luo J, Yang M (2015) Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sensor Actuat B 209:695

    Article  CAS  Google Scholar 

  27. Zhai YJ, Li JH, Chu XY, Xu MZ, Jin FJ, Li X, Fang X, Wei ZP, Wang XH (2016) MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J Alloy Compd 672:600

    Article  CAS  Google Scholar 

  28. Kang L, He D, Bie P, Jiang P (2015) Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection. Sensor Actuat B 220:888

    Article  CAS  Google Scholar 

  29. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  30. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118

    Article  CAS  Google Scholar 

  31. Park S, Boo H, Dong Chung T (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46

    Article  CAS  Google Scholar 

  32. Koide S, Yokoyama K (1999) Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J Electroanal Chem 468:193–201

    Article  CAS  Google Scholar 

  33. Si P, Huang Y, Wang T, Ma J (2011) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502

    Article  CAS  Google Scholar 

  34. Chu Z, Liu Y, Xu Y et al (2015) In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochim Acta 176:162–171

    Article  CAS  Google Scholar 

  35. Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42

    Article  CAS  Google Scholar 

  36. Pasta M, La Mantia F, Cui Y (2010) Mechanism of glucose electrochemical oxidation on gold surface. Electrochim Acta 55:5561 and refs therein

  37. Jia H, Chang G, Lei M, He H, Liu X, Shu H, Xia T, Su J, He Y (2016) Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation. Appl Surf Sci 384:58–64

    Article  CAS  Google Scholar 

  38. Zhao Y, Fan L, Hong B, Ren J, Zhang M, Que Q, Ji J (2016) Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sensor Actuator B 231:800–810

    Article  CAS  Google Scholar 

  39. Radhakrishnan S, Kim HY, Kim BS (2016) A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection. Sensor Actuator B: Chem 233:93

    Article  CAS  Google Scholar 

  40. Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB, Jiang Q (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169

    Google Scholar 

  41. Disanto RM, Subramanian V, Gu Z (2015) Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:548–564

    Article  CAS  Google Scholar 

  42. Pletcher D (1984) Electrocatalysis: present and future. J Appl Electrochem 14:403–415

    Article  CAS  Google Scholar 

  43. Tominaga M, Shimazoe T, Nagashima M et al (2006) Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. J Electroanal Chem 590:37–46

    Article  CAS  Google Scholar 

  44. Zhong G-X, Zhang W-X, Sun Y-M et al (2015) A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors Actuators B Chem 212:72–77

    Article  CAS  Google Scholar 

  45. Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1

    Article  CAS  Google Scholar 

  46. Mahmoudian MR, Basirun WJ, Woi PM et al (2016) Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni (OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater Sci Eng C 59:500–508

    Article  CAS  Google Scholar 

  47. Yang Y, Wang Y, Bao X, Li H (2016) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. J Electrochem Chem 775:163

    Article  CAS  Google Scholar 

  48. Freijanes Y, Barragán VM, Munoz S (2016) Chronopotentiometric study of a Nafion membrane in presence of glucose. J Membrane Sci 510:79

    Article  CAS  Google Scholar 

  49. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J Electroanal Chem 196:127–144

    Article  Google Scholar 

  50. Ghiaci M, Tghizadeh M, Ensafi AA, Zandi-Atashbar N, Rezaei B (2016) Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J Taiwan Inst Chem E 63:39

    Article  CAS  Google Scholar 

  51. Miao F, Tao B, Chu PK (2015) Ordered-standing nickel hydroxide microchannel arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Micro Eng 133:11

    Article  CAS  Google Scholar 

  52. Hestekin JA, Gilbert EP, Henry MP, Datta R, St. Martin EJ, Snyder SW (2006) Modified porous Nafion: membrane characterization and two-phase separations. J Membrane Sci 281:268–273

    Article  CAS  Google Scholar 

  53. Mauritz KA, Moore RB (2010) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  54. Miao Z, Wang P, Zhong A, Jang M, Xu Q, Hao S, Hu X (2015) Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyaniline nanocomposites. J Electroanal Chem 756:153–160

    Article  CAS  Google Scholar 

  55. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens Bioelectron 81:259–267

    Article  CAS  Google Scholar 

  56. Ruiyi L, Juanjuan Z, Zhouping W et al (2015) Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sensors Actuators B Chem 208:421–428

    Article  CAS  Google Scholar 

  57. Jeong H, Kim J (2014) Fabrication of nanoporous Au films with ultra-high surface area for sensitive electrochemical detection of glucose in the presence of Cl−. Appl Surf Sci 297:84–88

    Article  CAS  Google Scholar 

  58. Luo Y, Kong FY, Li C et al (2016) One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensors Actuators B Chem 234:625–632

    Article  CAS  Google Scholar 

  59. Shu H, Chang G, Su J et al (2015) Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sensors Actuators B Chem 220:331–339

    Article  CAS  Google Scholar 

  60. Balamurugan J, Thanh TD, Karthikeyan G et al (2016) A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens Bioelectron 89:970–977

    Article  CAS  Google Scholar 

  61. Fan S, Zhao M, Ding L, Liang J, Chen J, Li Y, Chen S (2016) Synthesis of 3D hierarchical porous Co3O4 film by eggshell membrane for non-enzymatic glucose detection. J Electroanal Chem 775:52

    Article  CAS  Google Scholar 

  62. Hoa LT, Chung JS, Hur SH (2016) A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sensors Actuators B Chem 223:76–82

    Article  CAS  Google Scholar 

  63. Wu W, Yu B, Wu H et al (2017) Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose. Mater Sci Eng C 70:430–437

    Article  CAS  Google Scholar 

  64. Yin H, Cui Z, Wang L, Nie Q (2016) In situ reduction of the Cu/Cu2O/carbon spheres composite for enzymaticless glucose sensors. Sensor Actuator B Chem 222:1018–1023

    Article  CAS  Google Scholar 

  65. Zhou DL, Feng JJ, Cai LY et al (2014) Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim Acta 115:103–108

    Article  CAS  Google Scholar 

  66. Zhang Z, Pan P, Liu X et al (2017) 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater Chem Phys 187:28–38

    Article  CAS  Google Scholar 

  67. Maaoui H, Singh SK, Teodorescu F et al (2017) Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochim Acta 224:346–354

    Article  CAS  Google Scholar 

  68. Lu N, Shao C, Li X, Miao F, Wang K, Liu Y (2016) CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram Int 42:11285

    Article  CAS  Google Scholar 

  69. Shabnam L, Nayeem Faisal S, Kumar Roy A et al (2016) Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759

    Article  CAS  Google Scholar 

  70. Zheng W, Hu L, Lee LYS, Wong KY (2016) Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J Electroanal Chem 781:155–160

    Article  CAS  Google Scholar 

  71. Yang S, Li G, Wang D et al (2017) Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor. Sensors Actuators B Chem 238:588–595

    Article  CAS  Google Scholar 

  72. Subramanian P, Niedziolka-Jonsson J, Lesniewski A et al (2014) Preparation of reduced graphene oxide–Ni(OH)2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing. J Mater Chem A 2:5525

    Article  CAS  Google Scholar 

  73. Li S, Xing Y, Hou L et al (2016) Facile synthesis of NiO/CuO reduced graphene oxide nanocomposites for use in enzyme-free glucose sensisng. Int J Electrochem Sci 11:6747–6760

    Article  CAS  Google Scholar 

  74. Shen Z, Gao W, Li P et al (2016) Highly sensitive nonenzymatic glucose sensor based on Nickel nanoparticle–attapulgite-reduced graphene oxide-modified glassy carbon electrode. Talanta 159:194–199

    Article  CAS  Google Scholar 

  75. Geng D, Bo X, Guo L (2016) Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sensors Actuators B Chem 244:131–141

    Article  CAS  Google Scholar 

  76. Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049

    Article  CAS  Google Scholar 

  77. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  78. Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848

    Article  CAS  Google Scholar 

  79. Chu Z, Liu Y, Xu Y, Shi L, Peng J, Jin W (2015) In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochim Acta 176:162–171

    Article  CAS  Google Scholar 

  80. Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532

    Article  CAS  Google Scholar 

  81. Makovos EB, Liu CC (1986) A cyclic-voltammetric study of glucose oxidation on a gold electrode. Biochem Bioenerg 15:157–165

    Article  CAS  Google Scholar 

  82. Li Z, Chen Y, Xin Y, Zhang Z (2015) Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci Rep 5:16115

    Article  CAS  Google Scholar 

  83. Liu T, Luo Y, Zhu J, Kong L, Wang W, Liang T (2016) Non-enzymatic detection of glucose using poly(azure A)-nickel modified glassy carbon electrode. Talanta 134:156–157

    Google Scholar 

  84. Wang J (2005) Chemically modified carbon nanotubes for use in electroanalysis. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  85. Devasenathipathy R, Mani V, Chen SM et al (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzym Microb Technol 78:40–45

    Article  CAS  Google Scholar 

  86. Wang J, Musameh M (2005) Carbon-nanotubes doped polypyrrole glucose biosensor. Anal Chim Acta 539:209–213

    Article  CAS  Google Scholar 

  87. Maaoui H, Teodoresu F, Wang Q et al (2016) Non-enzymatic glucose sensing using carbon quantum dots decorated with copper oxide nanoparticles. Sensors 16:1720

    Article  Google Scholar 

  88. Samuei S, Fakkar J, Rezvani Z et al (2017) Syntehesis and characterization of graphene quantum dots CoNiAl-layered-double-hydroxide-nanocomposite: application as a glucose sensor. Anal Biochem 521:31–39

    Article  CAS  Google Scholar 

  89. Wang Q, Ma Y, Jiang X et al (2016) Electrophoretic deposition of carbon nanofibers/Co(OH)2 nanocomposites: application for non-enzymatic glucose sensing. Electroanalysis 28:119–125

    Article  CAS  Google Scholar 

  90. Sutradhar S, Patnaik A (2017) A new fullerene-C 60–Nanogold composite for non-enzymatic glucose sensing. Sensors Actuators B Chem 241:681–689

    Article  CAS  Google Scholar 

  91. Yang J, Ye H, Zhang Z et al (2017) Metal–organic framework derived hollow polyhedron CuCo2Ofunctionalized porous graphene for sensitive glucose sensing. Sensors Actuators B Chem 242:728–735

    Article  CAS  Google Scholar 

  92. Belkhalfa H, Teodorescu F, Quéniat G et al (2016) Insulin impregnated reduced graphene oxide/Ni(OH)2 thin films for electrochemical insulin release and glucose sensing. Sensors Actuators B Chem 237:693–701

    Article  CAS  Google Scholar 

  93. Wang Q, Wang Q, Li M et al (2015) Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing. RSC Adv 5:15861–15869

    Article  CAS  Google Scholar 

  94. Zhang X, Liao Q, Liu S et al (2015) CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing. Anal Chim Acta 858:49–54

    Article  CAS  Google Scholar 

  95. Wang CH, Yang CH, Chang JK (2017) High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids. Biosens Bioelectron 89:483–488

    Article  CAS  Google Scholar 

  96. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  97. Wang L, Zhang Y, Yu J et al (2017) A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sensors Actuators B Chem 239:172–179

    Article  CAS  Google Scholar 

  98. Wang B, Wu Y, Chen Y et al (2017) Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sensors Actuators B Chem 238:802–808

    Article  CAS  Google Scholar 

  99. Zhang M, Halder A, Hou C et al (2016) Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry 109:87–94

    Article  CAS  Google Scholar 

  100. Jia L, Liu J, Wang H (2013) Preparation of poly (diallyldimethylammonium chloride)-functionalized graphene and its applications for H2O2 and glucose sensing. Electrochim Acta 111:411–418

    Article  CAS  Google Scholar 

  101. Yang S, Liu L, Wang G et al (2015) One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. J Electroanal Chem 755:15–21

    Article  CAS  Google Scholar 

  102. Tian Y, Liu Y, Wang WP et al (2015) CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim Acta 156:244–251

    Article  CAS  Google Scholar 

  103. Tian Y, Wei Z, Zhang K et al (2017) Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing. Sensors Actuators B Chem 241:584–591

    Article  CAS  Google Scholar 

  104. Hui N, Wang S, Xie H et al (2015) Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3, 4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors Actuators B Chem 221:606–613

    Article  CAS  Google Scholar 

  105. Zhang H, Liu S (2017) Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing. Sensors Actuators B Chem 238:788–794

    Article  CAS  Google Scholar 

  106. Luo Y, Huang K, Xu H (2005) Application of electrospray ionization-mass spectrometry to screen extractants for determination of insulin in an emulsion system by HPLC-UV. Anal Chim Acta 553:64–72

    Article  CAS  Google Scholar 

  107. Shen GY, Wang H, Deng T, Shen GL, Yu RQ (2005) A novel piezoelectric immunosensor for detection of carcinoembryonic antigen. Talanta 67:217–220

    Article  CAS  Google Scholar 

  108. Lin Y, Hu L, Li L, Wang K (2014) Facile synthesis of nickel hydroxide–graphene nanocomposites for insulin detection with enhanced electro-oxidation properties. RSC Adv 4:46208–46213

    Article  CAS  Google Scholar 

  109. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270

    Article  CAS  Google Scholar 

  110. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors:1400–1458

  111. Salimi A, Noorbakhash A, Sharifi E, Semnani A (2008) Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens Bioelectron 24:792–798

    Article  CAS  Google Scholar 

  112. Lohmüller T, Müller U, Breisch, Nisch W, Rudorf R, Schuhmann W, Spatz J (2008) Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties. J Microchem Micoeng 18:115011

    Google Scholar 

  113. Murayama H, Matsuura N, Kawamura T, Maruyama T, Kikuchi N, Kobayashi T, Nagata A (2006) A sensitive radioimmunoassay of insulin autoantibody: Reduction of non-specific binding of [125 I] insulin. J Autoimmune 26:127–132

    Article  CAS  Google Scholar 

  114. Aronis KN, Mantzoros CS (2012) A brief history of insulin resistance: from the first insulin radioimmunoassay to selectively targeting protein kinase C pathways. Metabolism 61:445–449

    Article  CAS  Google Scholar 

  115. Vleurick L, Renaville R, VandeHaar M, Hornick JL, Istasse L, Parmentier I, Portetelle D (2000) A homologous radioimmunoassay for quantification of insulin-like growth factor-binding protein-2 in blood from cattle. J Dairy Sci 83:452–458

    Article  CAS  Google Scholar 

  116. Ortner K, Buchberger W, Himmelsbach M (2009) Capillary electrokinetic chromatography of insulin and related synthetic analogues. J Chromatogr 1216:2953–2957

    Article  CAS  Google Scholar 

  117. Pu Y, Zhu Z, Han D et al (2011) Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136:4138–4140

    Article  CAS  Google Scholar 

  118. Andersen L, Dinesen BO, Jørgensen PN et al (1993) Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chem 39:578–582

    CAS  Google Scholar 

  119. Abu Heshmeh N, Sallam A, Mater Y, Alawi M (2013) A new method for determination of human insulin in aqueous injections. Int J Pharm Biomed Res 4:42

    Article  Google Scholar 

  120. Yilmaz B, Kadioglu Y (2012) Simultaneous determination of gemcitabine and its metabolite in human plasma by high-performance liquid chromatography. Int J Pharm 2:21–29

    CAS  Google Scholar 

  121. Zhang B, Jiang Y, Kuang H, Yao C, Huang Q, Xu S, Fu W (2008) Development of a spiral piezoelectric immunosensor based on thiol self-assembled monolayers for the detection of insulin. J Immunol Methods 338:7–13

    Article  CAS  Google Scholar 

  122. Mizutani F, Ohta E, Mie Y, Niwa O, Yasukawa T (2008) Enzyme immunoassay of insulin at picomolar levels based on the coulometric determination of hydrogen peroxide. Sens Actuat B 135:304–308

    Article  CAS  Google Scholar 

  123. Määttä KR, Kamal-Eldin A, Törrönen AR (2003) High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J Agr Food Chem 51:6736–6744

    Article  CAS  Google Scholar 

  124. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  125. Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly (dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72:3196–3202

    Article  CAS  Google Scholar 

  126. Quirino JP, Terabe S (2000) Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping. Anal Chem 72:1023–1030

    Article  CAS  Google Scholar 

  127. Hvass A, Skelbaek-Pedersen B (2005) Determination of protamine peptides in insulin drug products using reversed phase high performance liquid chromatography. J Pharmaceut Biomed Anal 37:551–557

    Article  CAS  Google Scholar 

  128. Shihabi ZK, Friedberg M (1998) Insulin stacking for capillary electrophoresis. J Chromatogr A 807:129–133

    Article  CAS  Google Scholar 

  129. Visser NFC, Van Harmelen M, Lingeman H, Irth H (2003) On-line SPE–CE for the determination of insulin derivatives in biological fluids. J Pharmaceut Biomed Anal 33:451–462

    Article  CAS  Google Scholar 

  130. Ortner K, Buchberger W, Himmelsbach M (2009) Capillary electrokinetic chromatography of insulin and related synthetic analogues. J Chromatogr A 1216:2953–2957

    Article  CAS  Google Scholar 

  131. Wang J (2006) Analytical electrochemistry. John Wiley & Sons, New York

    Book  Google Scholar 

  132. Pikulski M, Gorski W (2000) Iridium-based electrocatalytic systems for the determination of insulin. Anal Chem 72:2696–2702

    Article  CAS  Google Scholar 

  133. Salimi A, Pourbeyram S, Haddadzadeh H (2003) Sol–gel derived carbon ceramic composite electrode containing a ruthenium complex for amperometric detection of insulin at physiological pH. J Electroanal Chem 542:39–49

    Article  CAS  Google Scholar 

  134. Habibi E, Omidinia E, Heidari H, Fazli M (2016) Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode. Anal Biochem 495:37–41

    Article  CAS  Google Scholar 

  135. Salimi A, Roushani M, Soltanian S, Hallaj R (2007) Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode. Anal Chem 79:7431–7438

    Article  CAS  Google Scholar 

  136. Zhang M, Mullens C, Gorski W (2005) Insulin oxidation and determination at carbon electrodes. Anal Chem 77:6396–6401

    Article  CAS  Google Scholar 

  137. Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010) Imprinting molecular recognition sites on multiwalled carbon nanotubes surface for electrochemical detection of insulin in real samples. Electrochim Acta 55:9146–9156

    Article  CAS  Google Scholar 

  138. Salimi A, Mohamadi L, Hallaj R, Soltanian S (2009) Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode. Electrochem Commun 11:1116–1119

    Article  CAS  Google Scholar 

  139. Wang J, Tangkuaram T, Loyprasert S, Vazquez-Alvarez T, Veerasai W, Kanatharana P, Thavarungkul P (2007) Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Anal Chim Acta 581:1–6

    Article  CAS  Google Scholar 

  140. Jaafariasl M, Shams E, Amini MK (2011) Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochim Acta 56:4390–4395

    Article  CAS  Google Scholar 

  141. Noorbakhsh A, Alnajar AIK (2016) Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem J 129:310–317

    Article  CAS  Google Scholar 

  142. Amini N, Gholivand MB, Shamsipur M (2014) Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode. J Electroanal Chem 714:70–75

    Article  CAS  Google Scholar 

  143. Arvinte A, Westermann AC, Sesay AM, Virtanen V (2010) Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sens Actuat B 150:756–763

    Article  CAS  Google Scholar 

  144. Rafiee B, Fakhari AR (2013) Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Biosens Bioelectron 46:130–135

    Article  CAS  Google Scholar 

  145. Quintana M, Vazquez E, Prato M (2012) Organic functionalization of graphene in dispersions. Accounts Chem Res 46:138–148

    Article  CAS  Google Scholar 

  146. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  CAS  Google Scholar 

  147. Yagati AK, Min J, Cho S (2014) Electrosynthesis of ergo-np nanocomposite films for bioelectrocatalysis of horseradish peroxidase towards H2O2. J Electrochem Soc 161:G133–G140

    Article  CAS  Google Scholar 

  148. Bai J, Jiang X (2013) A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal Chem 85:8095–8101

    Article  CAS  Google Scholar 

  149. Liang LJ, Wang Q, Wu T, Shen JW, Kang Y (2009) Molecular dynamics simulation on stability of insulin on graphene. Chin J Chem Phys 22:627

    Article  CAS  Google Scholar 

  150. Zhang X, Zhu S, Deng C, Zhang X (2012) An aptamer based on-plate microarray for high-throughput insulin detection by MALDI-TOF MS. Chem Commun 48:2689–2691

    Article  CAS  Google Scholar 

  151. Li T, Liu Z, Wang L, Guo Y (2016) Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Adv 6:30732–30738

    Article  CAS  Google Scholar 

  152. Hamidi H, Shams E, Yadollahi B, Esfahani FK (2008) Fabrication of bulk-modified carbon paste electrode containing α-PW 12 O 40 3− polyanion supported on modified silica gel: preparation, electrochemistry and electrocatalysis. Talanta 74:909–914

    Article  CAS  Google Scholar 

  153. Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563

    Article  CAS  Google Scholar 

  154. Bhure MH, Kumar I, Natu AD, Chikate RC, Rode CV (2008) Phosphotungstic acid on silica with modified acid sites as a solid catalyst for selective cleavage of tert-butyldimethylsilyl ethers. Catal Communications 9:1863–1868

    Article  CAS  Google Scholar 

  155. Mahreni A, Mohamad AB, Kadhum AAH, Daud WRW, Iyuke SE (2009) Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. J Membrane Sci 327:32–40

    Article  CAS  Google Scholar 

  156. Salimi A, Roushani M, Haghighi B, Soltanian S (2006) Amperometric detection of insulin at renewable sol–gel derived carbon ceramic electrode modified with nickel powder and potassium octacyanomolybdate (IV). Biosens Bioelectron 22:220–226

    Article  CAS  Google Scholar 

  157. Zeng Y, Li Z, Ma M, Zhou S (2000) In situ surface Raman study of the induced codeposition mechanism of Ni–Mo alloys. Electrochem Commun 2:36–38

    Article  CAS  Google Scholar 

  158. Arvinte A, Sesay AM, Virtanen V (2011) Carbohydrates electrocatalytic oxidation using CNT–NiCo-oxide modified electrodes. Talanta 84:180–186

    Article  CAS  Google Scholar 

  159. Berber MR, Hafez IH (2016) Carbon nanotube-conducting polymer composites as electrode material in electroanalytical applications. InTech, Rijeka

    Google Scholar 

  160. Zhang M, Smith A, Gorski W (2004) Insulin oxidation and determination at carbon electrodes. Anal Chem 76:5045–5050

    Article  CAS  Google Scholar 

  161. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  CAS  Google Scholar 

  162. Ng CM, Loh HS, Muthoosamy K, Sridewi N, Manickam S (2016) Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation. Int J Nanomedicine 11:1607

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Project APVV-16-0029 of the Slovak Research and Development Agency and Project VEGA 1/0074/17 of the Slovak Scientific Grant Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Oriňaková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovancová, J., Šišoláková, I., Oriňaková, R. et al. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J Solid State Electrochem 21, 2147–2166 (2017). https://doi.org/10.1007/s10008-017-3544-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3544-0

Keywords

Navigation