Skip to main content
Log in

Inhibiting effect of carbonate on the photoinduced flatband potential shifts during water photooxidation at TiO2/solution interface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The TiO2/solution interfacial junction is of scientific and practical importance in the field of photoelectrochemical water splitting. Illumination of this interface usually induces unwanted positive shifts in the flatband potential of TiO2 photoelectrode. In this paper, the inhibiting effect of carbonate on the flatband potential shifts during water oxidation at the illuminated TiO2/solution interface was investigated in pH 6–14 solutions by using Mott-Schottky measurement technique. The footprints of the photohole trapping at the TiO2 surface were traced. Most significant effects of the carbonate additive on the flatband potential shifts and on the interfacial charge densities of surface-trapped holes (STHs) were observed in pH < 12 near-neutral and weak-basic solutions. Based on a generalized surface-OH oxidation mechanism of water photooxidation, the experimental results were interpreted. Some novel features and/or properties for the photohole transport kinetics, such as the preferential surface-OH sites for initial hole trapping into TiO2 surface, pH- and carbonate-dependent charge density of STHs, and the kinetic rate determining step (RDS), were revealed and discussed by correlating the differentiated long-lived and short-lived STHs with photogenerated surface intermediate species of water oxidation. The results and discussion reported in this work provide new physical insights for understanding the mechanisms of water photooxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang X, Liu R, He Y, Thorne J, Zheng Z, Wang D (2015) Nano Res 8:56–81

    Article  CAS  Google Scholar 

  2. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520–7535

    Article  CAS  Google Scholar 

  3. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  4. Wang X, Kafizas A, Li X, Moniz SJA, Reardon PJT, Tang J, Parkin IP, Durrant JR (2015) J Phys Chem C 119:10439–10447

    Article  CAS  Google Scholar 

  5. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  6. Momeni MM, Ghayeb Y (2016) J Solid State Electrochem 20:683–689

    Article  CAS  Google Scholar 

  7. Yang M, Huo L, Pei L, Pan K, Gan Y (2014) Electrochim Acta 125:288–293

    Article  CAS  Google Scholar 

  8. Leary R, Westwood A (2011) Carbon 49:741–772

    Article  CAS  Google Scholar 

  9. Ali H, Ismail N, Mekewi M, Hengazy AC (2015) J Solid State Electrochem 19:3019–3026

    Article  CAS  Google Scholar 

  10. Li Y, Wang R, Li H, Wei X, Feng J, Liu K, Dang Y, Zhou A (2015) J Phys Chem C 119:20283–20292

    Article  CAS  Google Scholar 

  11. Hou Y, Li X-Y, Zhao Q-D, Quan X, Chen G-H (2010) Adv Funct Mater 20:2165–2174

    Article  CAS  Google Scholar 

  12. Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi VR, Shrivastav R, Dass S (2012) Int J Hydrog Energy 37:18713–18730

    Article  CAS  Google Scholar 

  13. Eisenberg D, Ahn HS, Bard AJ (2014) J Am Chem Soc 136:14011–14014

    Article  CAS  Google Scholar 

  14. Chae SY, Sudhagar P, Fujishima A, Hwang YJ, Joo O-S (2015) Phys Chem Chem Phys 17:7714–7719

    Article  CAS  Google Scholar 

  15. Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR (2010) J Phys Chem C 114:4208–4214

    Article  CAS  Google Scholar 

  16. Salvador P (2011) Prog Surf Sci 86:41–58

    Article  CAS  Google Scholar 

  17. van de Krol R (2012) Principles of photoelectrochemical cells. In: Van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production, vol 2. Springer Science + Business Media, New York, pp 13–67

    Chapter  Google Scholar 

  18. Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y (2007) J Am Chem Soc 129:11569–11578

    Article  CAS  Google Scholar 

  19. Wilson RH (1980) J Electrochem Soc 127:228–234

    Article  CAS  Google Scholar 

  20. Ulmann M, de Tacconi NR, Augustynski J (1986) J Phys Chem 90:6523–6530

    Article  CAS  Google Scholar 

  21. Augustynski J (1993) Electrochim Acata 38:43–46

    Article  CAS  Google Scholar 

  22. Nakato Y, Ogawa H, Morita K, Tsubomura H (1986) J Phys Chem 90:6210–6216

    Article  CAS  Google Scholar 

  23. Nakato Y, Akanuma H, Magari Y, Yae S, Shimizu J-I, Mori H (1997) J Phys Chem B 101:4934–4939

    Article  CAS  Google Scholar 

  24. Nakamura R, Nakato Y (2004) J Am Chem Soc 126:1290–1298

    Article  CAS  Google Scholar 

  25. Kong D-S, Wei Y-J, Li X-X, Zhang Y, Feng Y-Y, Li W-J (2014) J Electrochem Soc 161:H144–H153

    Article  CAS  Google Scholar 

  26. Nozik AJ, Memming R (1996) J Phys Chem 100:13061–13078

    Article  CAS  Google Scholar 

  27. Hagfeldt A, Björkstén U, Grätzel M (1996) J Phys Chem 100:8045–8048

    Article  CAS  Google Scholar 

  28. Munoz AG (2007) Electrochim Acta 52:4167–4176

    Article  CAS  Google Scholar 

  29. Pu P, Cachet H, Sutter EMM (2010) Electrochim Acta 55:5938–5946

    Article  CAS  Google Scholar 

  30. Roy P, Berger S, Schmuki P (2011) Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  31. Meekins BH, Kamat PV (2011) J Phys Chem Lett 2:2304–2310

    Article  CAS  Google Scholar 

  32. Sayama K, Arakawa H (1997) Faraday Trans 93:1647–1654

    Article  CAS  Google Scholar 

  33. Kong D-S, Zhang X-D, Wang J, Wang C, Zhao X, Feng Y-Y, Li W-J (2013) J Solid State Electrochem 17:69–77

    Article  CAS  Google Scholar 

  34. Zhang J-W, Kong D-S, Zhang H, Du D-D, Wang N, Feng Y-Y, Li W-J (2015) J Solid State Electrochem 19:3411–3423

    Article  CAS  Google Scholar 

  35. Gui Q, Yu D, Zhang S, Xiao H, Yang C, Song Y, Zhu X (2014) J Solid State Electrochem 18:141–148

    Article  CAS  Google Scholar 

  36. Kong D-S, Kong W-Q, Feng Y-Y, Li W-J, Wei Y-J (2013) J Electrochem Soc 160:C461–C466

    Article  CAS  Google Scholar 

  37. Kong D-S (2010) Langmuir 26:4880–4891

    Article  CAS  Google Scholar 

  38. Zhang Z, Hossain MF, Takahashi T (2010) Int J Hydrog Energy 35:8528–8535

    Article  CAS  Google Scholar 

  39. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  40. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. IUPAC (Marcel Dekker Inc), New York

    Google Scholar 

  41. Wu C, Linden KG (2010) Water Res 44:3585–3594

    Article  CAS  Google Scholar 

  42. Haygarth KS, Marin TW, Janik I, Kanjana K, Stanisky CM, Bartels DM (2010) J Phys Chem A 114:2142–2150

    Article  CAS  Google Scholar 

  43. Turchi CS, Ollis DF (1990) J Catal 122:178–192

    Article  CAS  Google Scholar 

  44. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) J Chem Technol Biotechnol 77:102–116

    Article  CAS  Google Scholar 

  45. Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1–12

    Article  CAS  Google Scholar 

  46. Teoh WY, Scott JA, Amal R (2012) J Phys Chem Lett 3:629–639

    Article  CAS  Google Scholar 

  47. Candal RJ, Zeltner WA, Anderson MA (2000) Environ Sci Technol 34:3443–3451

    Article  CAS  Google Scholar 

  48. Philippidis N, Sotiropoulos S, Efstathiou A, Poulios I (2009) J Photochem Photobiol A 204:129–136

    Article  CAS  Google Scholar 

  49. Zhang S, Zhao H, Jiang D, John R (2004) Anal Chim Acta 514:89–97

    Article  CAS  Google Scholar 

  50. Piscopo A, Robert D, Weber JV (2001) Appl Catal B 35:117–124

    Article  CAS  Google Scholar 

  51. Ojani R, Raoof J-B, Khanmohammadi A, Zarei E (2013) J Solid State Electrochem 17:63–68

    Article  CAS  Google Scholar 

  52. Mrowetz M, Selli E (2006) J Photochem Photobiol A 180:15–22

    Article  CAS  Google Scholar 

  53. Aguedach A, Brosillon S, Morvan J, Lhadi EK (2005) Appl Catal B 57:55–62

    Article  CAS  Google Scholar 

  54. Kumar A, Mathur N (2006) J Colloid Interf Sci 300:244–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific Research Foundation for Young Scientist of Shandong Province (no. BS2011NJ009) and National Natural Science Foundation (no. 21303094) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Sheng Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Kong, DS., Wang, Z. et al. Inhibiting effect of carbonate on the photoinduced flatband potential shifts during water photooxidation at TiO2/solution interface. J Solid State Electrochem 21, 1467–1475 (2017). https://doi.org/10.1007/s10008-016-3500-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3500-4

Keywords

Navigation