Skip to main content

Advertisement

Log in

A transparent solid-state ion gel for supercapacitor device applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A feasibility study of the synthesis of gel polymer electrolytes based in methyl methacrylate (MMA) and 1-vinyl-2-pyrrolidone (VP) using [HEMIm][BF4] as common ionic liquid has been done. A novel PVP/[HEMIm][BF4] solid-state and self-standing ion gel electrolyte has been successfully prepared. The thermal degradation of PVP/[HEMIm][BF4] ion gel occurs in two steps with the first one at above 200 °C and the main one over 390 °C. This solid-state ion gel is transparent, showing an optical transmittance with a maximum value of 90% in the visible wavelength region from 370 to 770 nm. The synthesized PVP/[HEMIm][BF4] solid-state ion gel exhibits an electrochemical stability window of ca. 5.0 V and an acceptable ionic conductivity of σ = 5.7 10−3 S cm−1 at room temperature. A symmetrical pseudocapacitive supercapacitor has been assembled and characterized using this PVP/[HEMIm][BF4] solid-state ion gel—glass/ITO/PEDOT/PVP/[HEMIm][BF4]/PEDOT/ITO/glass. It is found that the supercapacitor shows a typical areal specific capacitance of 3.1 mF cm−2, a maximum energy density of 2.5 μWh cm−2, and an areal specific power density of ca. 1 mW cm−2.

Squeme and cyclic voltammogram curves of the tested supercapacitor device

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Materials science, electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    Article  CAS  Google Scholar 

  4. Moreno J, Ortúzar ME, Dixon JW (2006) Energy-management system for a hybrid electric vehicle power supplies system. IEEE Trans Ind Electron 53:614–623

    Article  Google Scholar 

  5. Gökdere LU, Benlyazid K, Dougal RA, Santi E, Brice CW (2002) A virtual prototype for a hybrid electric vehicle. Mechatronics 12:575–593

    Article  Google Scholar 

  6. Thounthong P, Räel S, Davat B (2006) Test of a PEM fuel cell with low voltage static converter. J Power Sources 158:806–814

    Article  CAS  Google Scholar 

  7. Lam LT, Louey R (2006) Development of ultra-battery for hybrid-electric vehicle applications. J Power Sources 158:1140–1148

    Article  CAS  Google Scholar 

  8. Pandey GP, Kumar Y, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem 49A:743–751

    CAS  Google Scholar 

  9. Wang S, Hsia B, Carraro C, Maboudian R (2014) High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ion-gel electrolyte. J Mat Chem A 2:7997–8002

    Article  CAS  Google Scholar 

  10. Duong TK (2004) Annual Progress Report for Energy Storage Research and Development

  11. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  12. Chabal YJ, Cho K, Hinkle CL (2013) Safer high-performance electrodes, solid electrolytes, and Interface reactions for lithium-ion batteries. Material Matters 8:104–107

    CAS  Google Scholar 

  13. Yang L, Hu J, Lei G, Liu H (2014) Ionic liquid-gelled polyvinylidene fluoride/polyvinyl acetate polymer electrolyte for solid supercapacitor. Chem Eng J 258:320–326

    Article  CAS  Google Scholar 

  14. Rodríguez J, Navarrete E, Dalchiele EA, Sánchez L, Ramos-Barrado JR, Martín F (2013) Polyvinylpyrrolidone–LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors. J Power Sources 237:270–276

    Article  Google Scholar 

  15. Ravi M, Pavani Y, Kiran-Kumar K, Bhavani S, Sharma AK, Narasimha-Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448

    Article  CAS  Google Scholar 

  16. Susan MABH, Nada A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in room temperature ionic liquids as novel highly conductive polymer electrolytes, in: Ionic liquids in polymer systems, Brazel C., et al., ACS Symposium Series; American Chemical Society: Washington, DC, pp. 119–132

  17. Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983

    Article  CAS  Google Scholar 

  18. Ramesh S, Teh GB, Louh RF, Hou YK, Sin PY, Yi LJ (2010) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95

    Article  CAS  Google Scholar 

  19. Hu L, Tang Z, Zhang Z (2007) New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J Power Sources 166:226–232

    Article  CAS  Google Scholar 

  20. Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsujii Y (2011) Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush. Adv Mater 23:4868–4872

    Article  CAS  Google Scholar 

  21. Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) #anofibers. J Power Sources 196:559–564

    Article  CAS  Google Scholar 

  22. Li WL, Gao YM, Wang SM (2012) Gel polymer electrolyte with semi_IPN fabric for polymer lithium-ion battery. J Appl Polym Sci 125:1027–1032

    Article  CAS  Google Scholar 

  23. Kumar A, Saikia D, Singh F, Avasthi DK (2006) Li3+ ion irradiation effects on ionic conduction in P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system. Solid State Ionics 177:2575–2579

    Article  CAS  Google Scholar 

  24. Lalia BS, Yamada K, Hundal MS, Park JS, Park GG, Lee WY, Kim CS, Sekhon SS (2009) Physicochemical studies of PVdF–HFP-based polymer-ionic liquid composite electrolytes. Appl Phys A Mater Sci Process 96:661–670

    Article  CAS  Google Scholar 

  25. Kim KS, Park SY, Choi S, Lee H (2006) Ionic liquid–polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer. J Power Sources 155:385–390

    Article  CAS  Google Scholar 

  26. Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B (2011) Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. ChemSusChem 4:125–130

    Article  CAS  Google Scholar 

  27. Lufrano F, Staiti P (2004) Performance improvement of Nafion based solid state electrochemical supercapacitor. Electrochim Acta 49:2683–2689

    Article  CAS  Google Scholar 

  28. Lufrano F, Staiti P (2010) Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide–carbon electrodes. Electrochim Acta 55:7436–7442

    Article  Google Scholar 

  29. Schroeder M, Isken P, Winter M, Passerini S, Lex-Balducci A, Balducci A (2013) An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices. J Electrochem Soc 160:A1753–A1758

    Article  CAS  Google Scholar 

  30. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on structure-property relationship in composite polymer electrolytes. J Power Sources 139:384–393

    Article  CAS  Google Scholar 

  31. Ohno H (2005) Electrochemical aspects of ionic liquids. John Wiley & Sons, Inc., Hoboken, New Jersey

    Book  Google Scholar 

  32. Park MJ, Choi I, Hong J, Kim O (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. Appl Polym Sci 129:2363–2376

    Article  CAS  Google Scholar 

  33. Fuller J, Breda AC, Carlin RT (1998) Ionic liquid–polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem 459:29–34

    Article  CAS  Google Scholar 

  34. Lewandowski A, Swiderska A (2003) Electrochemical capacitors with polymer electrolytes based on ionic liquids. Solid State Ionics 161:243–249

    Article  CAS  Google Scholar 

  35. Yamazaki S, Takeawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2009) An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  36. Yamazaki S, Takeawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2010) Performance of electric double-layer capacitor with acidic cellulose–chitin hybrid gel electrolyte. Electrochem Soc 157:A203–A208

    Article  CAS  Google Scholar 

  37. Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y (2003) Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc 150:A695–A700

    Article  CAS  Google Scholar 

  38. Salsamendi M, Rubatat L, Mecerreyes D (2015) Electrochemistry in Ionic Liquids; Torriero, A. A. J., Ed, Springer, SW, chapter 9, pp 283–315

  39. Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616–619

    Article  Google Scholar 

  40. Desai S, Shepherda RL, Innisa PC, Murphy P, Hall C, Fabretto R, Wallac GG (2011) Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochim Acta 56:4408–4413

    Article  CAS  Google Scholar 

  41. Yang Y, Jeong S, Hu L, Wu H, Lee SW, Cui Y (2011) Transparent Lithium-Ion batteries. Proc Natl Acad Sci 108:13013–13018

    Article  CAS  Google Scholar 

  42. Chen T, Xue Y, Roy AK, Dai L (2014) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8:1039–1046

    Article  CAS  Google Scholar 

  43. Zhong J, Fan LQ, Wu X, Wu JH, Liu GJ, Lin JM, Huang ML, Wei YL (2015) Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim Acta 166:150–156

    Article  CAS  Google Scholar 

  44. Mantravadi R, Chinnam PR, Dikin DA, Wunder SL (2016) High conductivity, high strength solid electrolytes formed by in situ encapsulation of ionic liquids in nanofibrillar methyl cellulose networks. ACS Appl Mater Interfaces 8(21):13426–13436

    Article  CAS  Google Scholar 

  45. Shaijumon MM, Ou FS, Ci L, Ajayan PM (2008) Syntesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem Commun 20:2373–2375

    Article  Google Scholar 

  46. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX (2013) Investigating the electrochemical windows of ionic liquids. J Ind Eng Chem 19:106–112

    Article  CAS  Google Scholar 

  47. Basiricò L, Lanzara G (2012) Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance. Nanotechnology 23:305401–305413

    Article  Google Scholar 

  48. Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F (2005) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152:A229–A235

    Article  Google Scholar 

  49. Zhou H, Han G (2015) One-step fabrication of heterogeneous conducting polymers-coated Graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim Acta 192:448–455

    Article  Google Scholar 

  50. Chen T, Peng H, Durstock M, Dai L (2014) High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Reports 4:3612

    Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, revision a.02. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  52. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coordin Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  53. Foresman JB, Frisch AE (2000) Exploring chemistry with electronic structure methods, 2nd Ed., Gaussian, Inc

  54. Drissi M, Benhalima N, Megrouss Y, Rachida R, Chouaih A, Hamzaoui F (2015) Theoretical and experimental electrostatic potential around the m-nitrophenol molecule. Molecules 20:4042–4054

    Article  CAS  Google Scholar 

  55. Kricheldorf HR, Nuyken O, Swift G (2005) Handbook of polymer synthesis, second edn. Marcel Dekker, New York

    Google Scholar 

  56. Bond J, Lee PI (1971) The cupric sulfate–hydrazine system as an initiator of vinyl polymerization. I. The polymerization of methyl methacrylate in aqueous solution in the presence of oxygen. J Polym Sci 7:379

    Article  Google Scholar 

  57. Bond J, Lee PI (1971) Study of the kinetics of the polymerization of N-vinyl pyrrolidone by viscometry. J Polym Sci 9:1775

    Article  CAS  Google Scholar 

  58. Bond J, Lee PI (1971) Effects of precipitating polymer on the rates of vinyl polymerization initiated by the cupric sulphate-hydrazine system. J Polym Sci 9:1777–1778

    Article  CAS  Google Scholar 

  59. Senogles E, Thomas RA (1975) Polymerization kinetics of N-vinyl pyrrolidone. J Polym Sci Polym Symp 49:203–210

    Article  CAS  Google Scholar 

  60. Senogles E, Thomas RA (1978) Hydrogen bonding effects in the polymerization of N-vinyl pyrrolidone. J Polym Sci Polym Lett Ed 16:555–562

    Article  CAS  Google Scholar 

  61. Cizravi JC, Tay TY, Pon EC (2000) Kinetics of azo-initiated 1-vinyl-2-pyrrolidone polymerizations at low conversions in aqueous media. J Appl Polym Sci 75:239–246

    Article  CAS  Google Scholar 

  62. Erdmenger T, Vitz J, Wiesbrock F, Schubert US (2008) Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. J Mater Chem 18:5267–5273

    Article  CAS  Google Scholar 

  63. Gupta SS, Meena A, Parikh T, Serajuddin ATM (2014) Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion—I: polyvinylpyrrolidone and related polymers. J of Excipients and Food Chemicals 5(1):32–45

    Google Scholar 

  64. Shi L, Liu Q, Guo X, He W, Liu Z (2014) Pyrolysis of coal in TGA: extent of volatile condensation in crucible. Fuel Process Technol 121:91–95

    Article  CAS  Google Scholar 

  65. Saroj AL, Singh RK, Chandra S (2013) Studies on polymer electrolyte poly(vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behavior. Mater Sci Eng B 178:231–238

    Article  CAS  Google Scholar 

  66. Pundir SS, Mishra K, Rai DK (2015) Poly(vinyl)alcohol/1-butyl-3-methylimidazolium hydrogen sulfate solid polymer electrolyte: structural and electrical studies. Solid State Ionics 275:86–91

    Article  CAS  Google Scholar 

  67. Tao R, Tamas G, Xue L, Simon SL, Quitevis EL (2014) Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J Chem Eng Data 59:2717–2724

    Article  CAS  Google Scholar 

  68. Yeon SH, Kim KS, Choi S, Lee H, Kim HS, Kim H (2005) Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methyl imidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Electrochim Acta 50:5399–5407

    Article  CAS  Google Scholar 

  69. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J Solid State Electrochem 18:2255–2266

    Article  CAS  Google Scholar 

  70. Saroj AL, Singh RK, Chandra S (2014) Thermal, vibrational, and dielectric studies on PVP/LiBF4 + ionic liquid [EMIM][BF4]-based polymer electrolyte films. J Phys Chem Solids 75:849–857

    Article  CAS  Google Scholar 

  71. Buffeteau T, Grondin J, Lassèques JC (2010) Infrared spectroscopy of ionic liquids: quantitative aspects and determination of optical constants. Appl Spectrosc 64:112–119

    Article  CAS  Google Scholar 

  72. Jiang J, Gao D, Li Z, Su G (2006) Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym 66:1141–1148

    Article  CAS  Google Scholar 

  73. Yeon SH, Kim KS, Choi S, Cha JH, Lee H (2005) Characterization of PVdF(HFP) gel electrolytes based on 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B 109:17928–17935

    Article  CAS  Google Scholar 

  74. Jana S, Parthiban A, Chai CLL (2010) Transparent, flexible and highly conductive ion gels from ionic liquid compatible cyclic carbonate network. Chem Comm 46:1488–1490

    Article  CAS  Google Scholar 

  75. Fu X (2010) Polymer electrolytes for electrochromic devices, in: Polymer electrolytes: fundamentals and applications, Woodhead Publishing Limited, pp. 510

  76. Vila J, Ginés P, Pico JM, Franjo C, Jiménez E, Varela LM, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids evidence of Vogel-Tamman-Fulcher behavior. Fluid Phase Equilibr 242:141–146

    Article  CAS  Google Scholar 

  77. Lee KH, Zhang S, Lodge TP, Frisbie CD (2011) Electrical impedance of spin-coatable ion gel films. J Phys Chem B 115:3315–3321

    Article  CAS  Google Scholar 

  78. Ong SP, Andreussi O, Wu Y, Marzari N, Ceder G (2011) Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem Mater 23(11):2979–2986

    Article  CAS  Google Scholar 

  79. Kroon MC, Bujis W, Peters CJ, Witkamp GJ (2006) Decomposition of ionic liquids in electrochemical processing. Green Chem 8:241–245

    Article  CAS  Google Scholar 

  80. Shi MJ, Kou SZ, Shen BS, Lang JW (2014) Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with Graphene nanosheets prepared by arc-discharge. Chinese Chem Lett 25:850–864

    Google Scholar 

  81. Rodríguez-Moreno J, Navarrete-Astorga E, Dalchiele EA, Schrebler R, Ramos-Barrado JR, Martín F (2014) Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO2 nanoparticles for a high-performance and semi-transparent supercapacitor electrode. Chem Commun 50:5652–5655

    Article  Google Scholar 

  82. Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, Isikgor FH, Ouyang JJ (2015) Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci Mater Electron 26(7):1–25

    Google Scholar 

  83. Kurra N, Wang R, Alshareef HN (2015) All conducting polymer electrodes for asymmetric solid-state supercapacitors. J Mater Chem A 3:7368–7374

    Article  CAS  Google Scholar 

  84. Chen J, Jia C, Wan Z (2014) The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid Nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochim Acta 121:49–56

    Article  CAS  Google Scholar 

  85. Pandey GP, Rastogi AC, Westgate CR (2014) All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J Power Sources 245:857–865

    Article  CAS  Google Scholar 

  86. Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195:4418–4422

    Article  CAS  Google Scholar 

  87. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  88. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  CAS  Google Scholar 

  89. Kang YJ, Yoo Y, Kim W (2016) 3-V solid-state flexible supercapacitors with ionic-liquid-based polymer gel electrolyte for AC line filtering. ACS Appl Mater Interfaces 8(22):13909–13917

    Article  CAS  Google Scholar 

  90. Singh PK, Sabin KC, Chen X (2016) Ionic liquid-solid polymer electrolyte blends for supercapacitors applications. Polym Bull 73:255–263

    Article  CAS  Google Scholar 

  91. Kim W, Kim W (2016) 3V Omni-directionally stretchable one-body supercapacitors based on a single ion–gel matrix and carbon nanotubes. Nanotechnology 27:225402

    Article  Google Scholar 

  92. Lee J, Kim W, Kim W (2014) Stretchable carbon nanotube/ion−gel supercapacitors with high durability realized through interfacial microroughness. ACS Appl Mater Interfaces 6:13578–13586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Economy and Competitiveness with the research project TEC 2014-53906-R; and Junta de Andalucia through the project RNM1399. The authors are grateful to CSIC (Comisión Sectorial de Investigación Científica) of the Universidad de la República, in Montevideo, Uruguay, PEDECIBA – Física, ANII (Agencia Nacional de Investigación e Innovación), Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Navarrete-Astorga.

Electronic supplementary material

Online Resource 1

(DOCX 92 kb)

Online Resource 2

(DOCX 56 kb)

Online Resource 3

(DOCX 56 kb)

Online Resource 4

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete-Astorga, E., Rodríguez-Moreno, J., Dalchiele, E.A. et al. A transparent solid-state ion gel for supercapacitor device applications. J Solid State Electrochem 21, 1431–1444 (2017). https://doi.org/10.1007/s10008-016-3494-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3494-y

Keywords

Navigation