Skip to main content
Log in

8-aminoquinoline functionalized graphene oxide for simultaneous determination of guanine and adenine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The nanocomposite graphene oxide/8-aminoquinoline (GAQ) was prepared as modified electrode material for simultaneous determination of guanine and adenine. The prepared GAQ was characterized by SEM, TEM, FTIR, Raman, and UV-vis, which confirmed that the 8-aminoquinoline had been functionalized by covalent modification. The differential pulse voltammetry (DPV) proved the electrochemical properties of the GAQ, which exhibited good electrocatalytic activity and prominent synergistic effect for sensitive determination of guanine and adenine. The guanine and adenine both were detection by DPV showed good linearity with linear range covering 0.1–160 μM, and the detection limits (LOD) (S/N = 3) both were estimated to be 0.033 μM for guanine and adenine, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yari A, Derki S (2016) New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA. Sensors Actuators B Chem 227:456–466

    Article  CAS  Google Scholar 

  2. Tang C, Yogeswaran U, Chen SM (2009) Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film. Anal Chim Acta 636(1):19–27

    Article  CAS  Google Scholar 

  3. Xiao F, Zhao F, Li J, Liu L, Zeng B (2008) Characterization of hydrophobic ionic liquid-carbon nanotubes–gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine. Electrochim Acta 53(26):7781–7788

    Article  CAS  Google Scholar 

  4. Wu C, Tang Y, Wan C, Liu H, Wu K (2015) Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode. Electrochim Acta 166:285–292

    Article  CAS  Google Scholar 

  5. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, Liu YM (2013) Electrochemical biosensor based on silver nanoparticles-polydopamine-graphene nanocomposite for sensitive determination of adenine and guanine. Talanta 114:43–48

    Article  CAS  Google Scholar 

  6. Wei Y, Huang QA, Li MG, Huang XJ, Fang B, Wang L (2011) CeO2 nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine. Electrochim Acta 56(24):8571–8575

    Article  CAS  Google Scholar 

  7. Zhang R, Jin G, Hu X (2008) Sensitive determination of adenine on poly(amidosulfonic acid)-modified glassy carbon electrode. J Solid State Electrochem 13(10):1545–1552

    Article  Google Scholar 

  8. Li H, Wang X, Wang Z, Zhao W (2016) Simultaneous determination of guanine, adenine, thymine and cytosine with a simple electrochemical method. J Solid State Electrochem 20(8):2223–2230

    Article  CAS  Google Scholar 

  9. Hou S, Kasner ML, Su S, Patel K, Cuellari R (2010) Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene. J Phys Chem C 114:14915–14921

    Article  CAS  Google Scholar 

  10. Liu H, Wang G, Chen D, Zhang W, Li C, Fang B (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors Actuators B Chem 128(2):414–421

    Article  CAS  Google Scholar 

  11. Gao YS, Xu JK, Lu LM, Wu LP, Zhang KX, Nie T, Zhu XF, Wu Y (2014) Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62:261–267

    Article  CAS  Google Scholar 

  12. Liu X, Zhang L, Wei S, Chen S, Ou X, Lu Q (2014) Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron 57:232–238

    Article  CAS  Google Scholar 

  13. Yang T, Kong Q, Li Q, Wang X, Chen L, Jiao K (2014) Highly sensitive and synergistic detection of guanine and adenine based on poly(xanthurenic acid)-reduced graphene oxide interface. ACS Appl Mater Interfaces 6(14):11032–11037

    Article  CAS  Google Scholar 

  14. Huang J, Xu Y, Qian X (2014) Rhodamine-based fluorescent off-on sensor for Fe3+—in aqueous solution and in living cells: 8-aminoquinoline receptor and 2:1 binding. Dalton T 43(16):5983–5989

  15. Xie G, Shi Y, Hou F, Liu H, Huang L, Xi P, Chen F, Zeng Z (2012) A Highly Selective Fluorescent and Colorimetric Chemosensor for ZnII and Its Application in Cell Imaging. Eur J Inorg Chem 2012(2):327–332

    Article  CAS  Google Scholar 

  16. Shi Y, Chen Z, Cheng X, Pan Y, Zhang H, Zhang Z, Li CW, Yi C (2014) A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+. Biosens Bioelectron 61:397–403

    Article  CAS  Google Scholar 

  17. Cui S, Tian Z, Pu S, Dai Y (2016) Highly sensitive fluorescent sensor for Mg2+and Ca2+ based on a multi-addressable diarylethene. RSC Adv 6(24):19957–19963

  18. Corbet M, De Campo F (2013) 8-Aminoquinoline: a powerful directing group in metal-catalyzed direct functionalization of C-H bonds. Angew Chem 52(38):9896–9898

    Article  CAS  Google Scholar 

  19. Cheng R, Liu Y, Ou S, Pan Y, Zhang S, Chen H, Dai L, Qu J (2012) Optical turn-on sensor based on graphene oxide for selective detection of D-glucosamine. Anal Chem 84(13):5641–5644

    Article  CAS  Google Scholar 

  20. Liu FM, Du YQ, Cheng YM, Yin W, Hou CJ, Huo DQ, Chen C, Fa HB (2015) A selective and sensitive sensor based on highly dispersed cobalt porphyrin-Co3O4-graphene oxide nanocomposites for the detection of methyl parathion. J Solid State Electrochem 20(3):599–607

  21. Jiang L, Cui L, He X (2014) Cobalt-porphyrin noncovalently functionalized graphene as nonprecious-metal electrocatalyst for oxygen reduction reaction in an alkaline medium. J Solid State Electrochem 19(2):497–506

  22. Chen Y, Yang J, Yang Y, Peng Z, Li J, Mei T, Wang J, Hao M, Chen Y, Xiong W, Zhang L, Wang X (2015) A facile strategy to synthesize three-dimensional Pd@Pt core-shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chem Commun 51(52):10490–10493

  23. Chen Y, Mei T, Chen Y, Wang J, Li J, Fu Y, Dai G, Wang S, Xiong W, Wang X (2016) A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. J Solid State Electrochem 20:2055–2062

  24. Xia B, Chu M, Wang S, Wang W, Yang S, Liu C, Luo S (2015) Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu(2+). Anal Chim Acta 891:113–119

  25. Lv M, Wang X, Li J, Yang X, Zhang CA, Yang J, Hu H (2013) Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead (II) and cadmium (II) using square wave anodic stripping voltammetry. Electrochim Acta 108:412–420

  26. Lv M, Mei T, Zhang CA, Wang X (2014) Selective and sensitive electrochemical detection of dopamine based on water-soluble porphyrin functionalized graphene nanocomposites. RSC Adv 4(18):9261

  27. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965

  28. Alula MT, Yang J (2014) Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Anal Chim Acta 812:114–120

  29. Liu P, Qi W, An W, Tian L, Li Z, Chen X, Wu W (2015) The Changes of Absorption and Catalytic Capacity on Reduced Graphene Oxide After Electron Beam Irradiation. Nano 10(03):1550041

  30. Bu Y, Dai W, Li N, Zhao X, Zuo X (2013) The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid. J Nat Gas Chem 22(5):685–689

  31. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B 82(2):543–549

  32. Wang J, Yang B, Wang H, Yang P, Du Y (2015) Wang J, Yang B, Wang H, Yang P, Du Y (2015) Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Anal Chim Acta 893:41–48

  33. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

  34. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett 97(18):187401

  35. Zhang H, Han Y, Guo Y, Dong C (2012) Porphyrin functionalized graphene nanosheets-based electrochemical aptasensor for label-free ATP detection. J Mater Chem 22(45):23900

  36. Kang L, Chu J, Zhao H, Xu P, Sun M (2015) Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J Mater Chem C 3(35):9024–9037

  37. Xie Q, Chen XY, Zhang H, Liu M, Wang Q, Zhang X, Shen Y, Yang F (2015) Fabrication of a Modified Electrode Based on Fe3O4-Graphene Oxide Hybrid Composite: Applying to Simultaneous Determination of Adenine and Guanine in DNA. Electroanalysis 27(9):2201–2208

  38. Barman K, Jasimuddin S (2014) Electrochemical detection of adenine and guanine using a self-assembled copper(ii)–thiophenyl-azo-imidazole complex monolayer modified gold electrode. RSC Adv 4(91):49819–49826

  39. Ensafi AA, Abarghoui MM, Rezaei B (2014) A new electrochemical sensor based on porous silicon supported Pt–Pd nanoalloy for simultaneous determination of adenine and guanine. Sensors Actuators B Chem 204:528–535

  40. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353

  41. Thangaraj R, Senthil Kumar A (2012) Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17(3):583–590

  42. Wang HB, Zhang HD, Xu LL, Gan T, Huang KJ, Liu YM (2014) Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites. J Solid State Electrochem 18(9):2435–2442

  43. Liang X, Zhang X, Wang F, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18(12):3453–3461

  44. Davidson JN (1972) Nucleases and related enzymes. The biochemistry of the nucleic acids 7th ed Cox & Nyman, Norfolk, p 129

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 21401049 and 51272071) and Hubei Provincial Department of Science & Technology (2016CFB199 and 2014CFA096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Mei or Xianbao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Mei, T., Chen, Y. et al. 8-aminoquinoline functionalized graphene oxide for simultaneous determination of guanine and adenine. J Solid State Electrochem 21, 1357–1364 (2017). https://doi.org/10.1007/s10008-016-3492-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3492-0

Keywords

Navigation