Skip to main content
Log in

One-step electrodeposition of Ag-decorated ZnO nanowires

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5
Fig. 6a–b
Fig. 7

Similar content being viewed by others

References

  1. Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551

    Article  CAS  Google Scholar 

  2. Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111

    Article  CAS  Google Scholar 

  3. Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813

    Article  CAS  Google Scholar 

  4. Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252

    Article  CAS  Google Scholar 

  5. Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116

    Article  Google Scholar 

  6. Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105

    Article  CAS  Google Scholar 

  7. Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530

    Article  Google Scholar 

  8. Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391

    Article  CAS  Google Scholar 

  9. Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21

    Article  CAS  Google Scholar 

  10. Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27

    Article  CAS  Google Scholar 

  11. Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297

    Article  CAS  Google Scholar 

  12. Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685

    Article  CAS  Google Scholar 

  13. Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631

    Article  CAS  Google Scholar 

  14. Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193

    Article  CAS  Google Scholar 

  15. Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504

    Article  Google Scholar 

  16. Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871

    Article  CAS  Google Scholar 

  17. Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516

    Article  CAS  Google Scholar 

  18. Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489

    Article  CAS  Google Scholar 

  19. Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506

    Article  CAS  Google Scholar 

  20. Xie J, Wu Q (2010) Mater Lett 64:389–392

    Article  CAS  Google Scholar 

  21. Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616

    Article  Google Scholar 

  22. Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25

    Google Scholar 

  23. Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485

    Article  CAS  Google Scholar 

  24. Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150

    Article  CAS  Google Scholar 

  25. Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155

    Article  CAS  Google Scholar 

  26. Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673

    Article  CAS  Google Scholar 

  27. Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248

    Article  CAS  Google Scholar 

  28. Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202

    Article  Google Scholar 

  29. Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557

    Article  CAS  Google Scholar 

  30. Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145

    Article  CAS  Google Scholar 

  31. Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New York

    Book  Google Scholar 

  32. Pauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880

    Article  CAS  Google Scholar 

  33. Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Sensors Actuators B 223:893–903

    Article  CAS  Google Scholar 

  34. Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664

    Article  CAS  Google Scholar 

  35. Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152

    Article  CAS  Google Scholar 

  36. Song J, Lim S (2007) J Phys Chem C 111:596–600

    Article  CAS  Google Scholar 

  37. Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613

    Article  Google Scholar 

  38. Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453

    Article  CAS  Google Scholar 

  39. Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249

    Article  Google Scholar 

  40. Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108

  41. Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689

    Article  CAS  Google Scholar 

  42. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165

  43. Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435

    Article  CAS  Google Scholar 

  44. Su L, Qin N (2015) Ceram Int 41:2673–2679

    Article  CAS  Google Scholar 

  45. Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193

    Article  CAS  Google Scholar 

  46. Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637

  47. Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411N

  48. Zhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015

  49. Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387

    Article  CAS  Google Scholar 

  50. Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224

    Google Scholar 

  51. Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263

    Article  CAS  Google Scholar 

  52. Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173

    Google Scholar 

  53. Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721

    Article  CAS  Google Scholar 

  54. Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190

    CAS  Google Scholar 

  55. Manjón FJ, Mollar M, Hernández-Fenollosa MA, Marí B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39

    Article  Google Scholar 

  56. Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403

    Article  CAS  Google Scholar 

  57. Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economía y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Marí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimi, B., Ben Assaker, I., Kriaa, A. et al. One-step electrodeposition of Ag-decorated ZnO nanowires. J Solid State Electrochem 21, 1253–1261 (2017). https://doi.org/10.1007/s10008-016-3476-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3476-0

Keywords

Navigation