Skip to main content
Log in

The effect of ZnO addition on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 electrode used in nickel–metal hydride batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The studied electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 alloy showed a rather poor performance. To improve them, ZnO, a doping agent at different small amounts (0, 1, or 2.5 wt%), was added to this base alloy. Then, the prepared electrodes were investigated by various electrochemical techniques. The maximum discharge capacity, obtained after the activation procedure, increased with the rise in ZnO content. The activation, as well as the reversibility of the hydrogen absorption/desorption process, were significantly improved with the addition of ZnO. It was observed that the latter did not affect considerably the stability and the cycling lifetime if added to the electrodes. After 30 charge/discharge cycles, the diffusion coefficients were estimated to be 1.55 × 10−11, 1.30 × 10−11, and 6.05 × 10−11 cm2 s−1, respectively, for ZnO containing 0, 1, and 2.5 wt%. The ZnO catalyzed the kinetics of hydrogen absorption and desorption process thanks to capacity change before and after activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hosni B, Li X, Khaldi C, Elkedim O, Lamloumi J (2014) Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling. J Alloys Compd 615:119–125

    Article  CAS  Google Scholar 

  2. Boussami S, Khaldi C, Lamloumi J, Mathlouthi H, Takenouti H, Vivier V (2013) The impedance response of LaY2Ni9 negative electrode materials after activation. J Phys Chem Solids 74:1369–1374

    Article  CAS  Google Scholar 

  3. Boussami S, Khaldi C, Lamloumi J, Mathlouthi H, Takenouti H (2012) Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries. Electrochim Acta 69:203–208

    Article  CAS  Google Scholar 

  4. Khaldi C, Mathlouthi H, Lamloumi J (2009) A comparative study, of 1 M and 8 M KOH electrolyte concentrations, used in Ni–MH batteries. J Alloys Compd 469:464–474

    Article  CAS  Google Scholar 

  5. Tliha M, Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2007) Electrochemical investigation of the iron-containing and no iron-containing AB5-type negative electrodes. J Alloys Compd 440:323–327

    Article  CAS  Google Scholar 

  6. Tliha M, Mathlouthi H, Khaldi C, Lamloumi J Percheron-Guégan A (2006) Electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 hydrogen storage alloy. J Power Sources 160:1391–1394

    Article  CAS  Google Scholar 

  7. Ben Moussa M, Abdellaoui M, Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2005) Effect of substitution of Mm for La on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.75 compound. J Alloys Compd 399:264–269

    Article  CAS  Google Scholar 

  8. Mathlouthi H, Khaldi C, Ben Moussa M, Lamloumi J, Percheron-Guégan A (2004) Electrochemical study of mono-substituted and poly-substituted intermetallic hydrides. J Alloys Compd 375:297–304

  9. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2004) Electrochemical study of cobalt-free AB5–type hydrogen storage alloys. Int J Hydrog Energy 29:307–311

    Article  CAS  Google Scholar 

  10. Khaldi C, Boussami S, Ben Rejeb B, Mathlouthi H, Lamloumi J (2010) Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni-MH batteries. Mater Sci Eng 175:22–28

  11. Lee HJ, Yang DC, Park CJ, Park CN, Jang HJ (2009) Effects of surface modifications of the LMNi3.9Co0.6Mn0.3Al0.2 alloy in a KOH/NaBH4 solution upon its electrode characteristics within a Ni–MH secondary battery. Int J Hydrog Energy 34:481–486

    Article  CAS  Google Scholar 

  12. Angelo ACD (2006) Electrode surface modifications improve cathode hydrogen production and anode capacity in Ni–MH batteries. Int J Hydrog Energy 31:301–302

    Article  CAS  Google Scholar 

  13. Iwakura C, Matsuoka M, Kohno T (1994) Mixing effect of metal oxides on negative electrode reactions in the nickel hydride battery. J Electrochem Soc 141:2306–2309

    Article  CAS  Google Scholar 

  14. Khrussanova M, Terzieva M, Peshev P, Yu Ivanov E (1987) On the hydriding and dehydriding kinetics of magnesium with a titanium dioxide admixture. Mat Res Bull 22:405–412

    Article  Google Scholar 

  15. Terzieva M, Khrussanova M, Peshev P (1991) Dehydriding kinetics of mechanically alloyed mixtures of magnesium with some 3d transition metal oxides. Int J Hydrog Energy 16:265–270

  16. Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242

    Article  CAS  Google Scholar 

  17. Cui N, Luo JL (1998) Effects of oxide additions on electrochemical hydriding and dehydriding behavior of Mg2Ni-type hydrogen storage alloy electrode in 6 M KOH solution. Electrochim Acta 44:711–720

  18. Wang Y, Gao XP, Lu ZW, Hu WK, Zhou Z, Qu JQ, Shen PW (2005) Effects of metal oxides on electrochemical hydrogen storage of nanocrystalline LaMg12–Ni composites. Electrochim Acta 50:2187–2191

    Article  CAS  Google Scholar 

  19. Cheng SA, Lei YQ, Leng YJ, Wang QD (1998) Electrochemical performance of metal hydride negative electrode modified with bismuth oxide. J Alloys Compd 264:104–106

    Article  CAS  Google Scholar 

  20. Zhang S, Shi P, Deng C (2006) Characteristics of hydrogen storage alloy electrode with cupric oxide additive. Solid State Ionics 177:1193–1197

  21. Zhang P, Wei X, Liu Y, Zhu J, Yu G (2008) Effects of metal oxides addition on the performance of La1.3CaMg0.7Ni9 hydrogen storage alloy. Int J Hydrog Energy 33:1304–1309

    Article  CAS  Google Scholar 

  22. Li Y, Han S, Zhu X, Ding H (2010) Effect of CuO addition on electrochemical properties of AB3-type alloy electrodes for nickel/metal hydride batteries. J Power Sources 195:380–383

    Article  CAS  Google Scholar 

  23. Su G, He YH, Liu KY (2012) Effects of Co3O4 as additive on the performance of metal hydride electrode and Ni–MH battery. Int J Hydrogen Energy 37:11994–12002

  24. Li MM, Yang CC, Jing WT, Jin B, Lang XY, Jiang Q (2016) In situ grown Co3O4 on hydrogen storage alloys for enhanced electrochemical performance. Int J Hydrog Energy 41:8946–8953

  25. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2004) Electrochemical impedance spectroscopy and constant potential discharge studies of LaNi3.55Mn0.4Al0.3Co0.75−xFex hydrides alloy electrodes. J Alloys Compd 384:249–253

    Article  CAS  Google Scholar 

  26. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2003) Effect of partial substitution of Co with Fe on the properties of LaNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0, 0.15, 0.55) alloys electrodes. J Alloys Compd 360:266–271

  27. Ayari M (2003) Etude des propriétés des composes LaNi3.55Mn0.4Al0.3Co0.75−xFex–Application aux accumulateurs Ni-MH. Thèse d’Université, Faculté des Sciences de Tunis

  28. Mathlouthi H, Lamloumi J, Latroche M, Percheron-Guégan A (1997) Study of poly-substituted intermetallic hydrides: electrochemical applications. Ann Chim Sci Mater 22:241–244

    CAS  Google Scholar 

  29. Li CJ, Wang FR, Cheng WH, Li W, Zhao WT (2001) The influence of high-rate quenching on the cycle stability and the structure of the AB5-type hydrogen storage alloys with different Co content. J Alloys Compd 315:218–223

    Article  CAS  Google Scholar 

  30. Khaldi C (2004) Contribution à l’étude des propriétés physico-chimiques des alliages LaNi3.55Mn0.4Al0.3Co0.75−xFex (x =0, 0.15, 0.55, 0.75)-application aux accumulateurs nickel–metal-hydrure. Thèse d’Université, Faculté des Sciences de Tunis

  31. Khaldi C, Boussami S, Tliha M, Azizi S, Fenineche N, El-Kedim O, Mathlouthi H, Lamloumi J (2013) The effect of the temperature on the electrochemical properties of the hydrogen storage alloy for nickel–metal hydride accumulators. J Alloys Compd 574:59–66

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons

  33. Ayari M, Paul-Boncour V, Lamloumi J, Percheron-Guégan A (2003) Decomposition of the La3.55Ni0.4Al0.3Fe0.75 compound upon electrochemical cycling studied by magnetic properties. J Alloys Compd 356–357:133–136

    Article  Google Scholar 

  34. Ayari M, Paul-Boncour V, Lamloumi J, Percheron-Guégan A, Guillot M (2005) Study of the aging of LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) compounds in Ni–MH batteries by SEM and magnetic measurements. J Magn Magn Mater 288:374–383

Download references

Acknowledgements

The authors would like to express their gratefulness towards Mr. Latroche and Mrs. Percheron-Guégan (LCMTR, CNRS, France) for having offered to them the opportunity to prepare the alloys in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Khaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabaki, Y., Boussami, S., Khaldi, C. et al. The effect of ZnO addition on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 electrode used in nickel–metal hydride batteries. J Solid State Electrochem 21, 1157–1164 (2017). https://doi.org/10.1007/s10008-016-3458-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3458-2

Keywords

Navigation