Skip to main content
Log in

Surface modification of NiCdO barrier layer in complex photoanodes and TiO2 protective coating for efficient and stabile water dissociation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work presents a follow-up research of our previously published work. Herein, the photocatalytic performance of a nanostructured CdZnO/NiCdO composite photoanode has been improved by intercalation of Cu catalyst atoms in the electron barrier layer of NiyCd1−yO surface by an ion exchange process. As a result, the photocurrent yield increased by 29 % at +1 V potential against Ag/AgCl. This phenomenon was tentatively attributed to the increased electron concentration and/or interaction of the Cu3d electrons with the mid-energy valence electrons. To the contrary, the introduction of Ag, Co, and Ni deteriorated the photocatalytic performance. The corrosion challenges were assessed during 50 cycles of voltammetry. The background of the degradation/photocorrosion was studied with SEM, EDX, and XPS analysis. To combat the photocorrosion, the photoanodes were coated with TiO2 protective nanolayers of different thickness. The results for the photocurrent stability at a constant potential of +1 V showed that 9 nm TiO2 coating improved the durability of the photoanode on account of a photocurrent decrease for about 50 %. XPS studies proved that the degradation/corrosion changes on the photoanode’s surface could be associated with an irreversible electrochemical oxidation of CdO into CdO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337

    Article  CAS  Google Scholar 

  3. Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994

    Article  CAS  Google Scholar 

  4. Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C 19:35–51

    Article  CAS  Google Scholar 

  5. Qiu Y, Leung S-F, Zhang Q, Hua B, Lin Q, Wei Z, Tsui K-H, Zhang Y, Yang S, Fan Z (2014) Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett 14:2123–2129

    Article  CAS  Google Scholar 

  6. Li X, Wang Z, Zhang Z, Chen L, Cheng J, Ni W, Wang B, Xie E (2015) Light illuminated α−Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting. Sci Rep 5:9130

    Article  Google Scholar 

  7. Kargar A, Partokia SS, Niu MT, Allameh P, Yang M, May S, Cheung JS, Sun K, Xu K, Wang D (2014) Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotechnology 25:205401

    Article  Google Scholar 

  8. Yang J, Walczak K, Anzenberg E, Toma FM, Yuan G, Beeman J, Schwartzberg A, Lin Y, Hettick M, Javey A, Ager JW, Yano J, Frei H, Sharp ID (2014) Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. J Am Chem Soc 136:6191–6194

    Article  CAS  Google Scholar 

  9. Tong X, Yang P, Wang Y, Qin Y, Guo X (2014) Enhanced photoelectrochemical water splitting performance of TiO2 an ultrathin nitrogen-doped carbon molecular layer deposition. Nanoscale 6:6692–6700

    Article  CAS  Google Scholar 

  10. Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Auguastynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824–828

    Article  CAS  Google Scholar 

  11. Arthur RM, Nozik J (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078

    Article  Google Scholar 

  12. Deutsch TG, Koval CA, Turner JA (2006) III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J Phys Chem B 110:25297–25307

    Article  CAS  Google Scholar 

  13. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy; materials-related aspects. Int J Hydrog Energy 27:991–1022

    Article  CAS  Google Scholar 

  14. Burstein GA (2005) Century of Tafel’s equation: 1905–2005 a commemorative issue of corrosion science. Corros Sci 47:2858–2870

    Article  CAS  Google Scholar 

  15. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287

    Article  CAS  Google Scholar 

  16. Trunk M, Gorzkowska-Sobas A, Venkatachalapathy V, Zhang T, Galeckas A, Kuznetsov AY (2012) Novel ZnO-based ternary oxides for optoelectronic applications. Energy Procedia 22:101–107

    Article  CAS  Google Scholar 

  17. Detert DM, Lim SHM, Tom K, Luce AV, Anders A, Dubon OD, You KM, Walukiewicz W (2013) Crystal structure and properties of Cd1-xZnxO alloys across the full composition range. App Phys Lett 102:232103–232104

    Article  Google Scholar 

  18. Detert DM, Tom KB, Battaglia C, Denlinger DJ, Lim SHN, Javey A, Anders A, Dubon OD, Yu KM, Walukiewicz W (2014) Fermi level stabilization and band edge energies in CdxZn1−xO alloys. J App Phys 115:233708–233706

    Article  Google Scholar 

  19. Francis CA, Detert DM, Chen G, Dubon OD, KM Y, Walukiewicz W (2015) NixCd1-xO: semiconducting alloys with extreme type III band offsets. App. Phys Lett 106:022110–022114

    Google Scholar 

  20. Ristova MM, Zhu W, KM Y, Walukiewicz W (2016) Semiempirical modeling of a three sublayer photoanode for highly efficient photoelectrochemical water splitting: parameter and electrolyte optimizations. Sol Energy Mat Sol Cells 157:190–199

    Article  CAS  Google Scholar 

  21. Chen S, Wang-Wang L (2012) Thermodynamic oxidation and reduction potentials of photocatalitic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  22. Domenech J, Prieto A (1986) Stability of ZnO particles in aqueous suspensions under UV illumination. J Phys Chem 90:1123–1126

    Article  CAS  Google Scholar 

  23. Ristova M, Velevska J, Ristov M (2002) Chemical bath deposition and electrochromic properties of NiOx films. Sol Energy Mat Sol Cells 71:219–230

    Article  CAS  Google Scholar 

  24. Pauling L (1967) The chemical bond. Cornell University Press, Ithaca, New York

    Google Scholar 

  25. Shen ZX, List RS, Dessau DS, Wells BO, Jepsen O, Arko AJ, Barttlet R, Shih CK, Parmigiani F, Huang JC, Lindberg PAP (1991) Electronic structure of NiO: correlation and band effects. Phys Rev B 44

  26. King PDC, Veal TD, Schleife A, Zuniga-Perez J, Martel B, Jefferson PH, Fuchs F, Munoz-Sanjose V, Bechstedt F, McConville CF (2009) Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations. Phys Rev B 79:205205

    Article  Google Scholar 

  27. Ristova TP, Mitreski M, Ristov M (1998) Silver doping of thin CdS films by an ion exchange process. Thin Solid Films 315:301–304

    Article  CAS  Google Scholar 

  28. Takahashi T, Nomura E, Yamamoto O (1973) Solid state ionics—the ionic conductivity of the Ag2S-Ag1.70Te-AgX system (AgX; Ag4P2O7, Ag3PO4and AgPO3. J Appl Electrochem 3:23–29

    Article  CAS  Google Scholar 

  29. Matienzo LJ, Yin LI, Grim SO, Swartz WE Jr (1973) X-ray photoelectron spectroscopy of nickel compounds. Inorg Chem 12:2762–2769

    Article  CAS  Google Scholar 

  30. Khallaf H, Chen C-T, Chang L-B, Lupan O, Dutta A, Heinrich H, Shenouda A, Chow L (2011) Investigation of chemical bath deposition of CdO thin films, using three different complexing agents. Appl Surf Sci 257:9237–9242

    Article  CAS  Google Scholar 

  31. Liu H, Mao H, Somayazulu M, Ding Y, Meng Y, Hausermann D (2004) B 1-to-B 2 phase transition of transition-metal monoxide CdO under strong compression. Phys Rev B 70:094114

    Article  Google Scholar 

  32. Wriedt HA (1987) The Cd−O (cadmium-oxygen) system. Journal of Phase Equilibria 8:140–147

    Article  CAS  Google Scholar 

  33. Ristova MM, Gligorova A, Nasov I, Gracin D, Milun M, Kostadinova-Boskova K, Popeski-Dimovski R (2012) TiO2 coating for SnO2:F films produced by filtered cathodic arc evaporation for improved resistance to H+ radical exposure. J Electron Mater 41

  34. Gu K, Zhong P, Guo M, Ma J, Jiang Q, Zhang S, Zhou X, Xie Y, Ma X, Wang Y (2016) Sonication-polished anodic TiO2 nanotube array-based photoanode for efficient solar energy conversion. J Solid State Electrochem DOI. doi:10.1007/s10008-016-3301-9

    Google Scholar 

  35. Zhonga P, Ma X, Chen X, Zhong R, Liu X, Ma D, Zhang M, Li Z (2015) Morphology-controllable polycrystalline TiO2 nanorod arrays for efficient charge collection in dye-sensitized solar cells. Nano Energy 16:99–111

    Article  Google Scholar 

  36. Jang JS, Ji SM, Bae SW, Son HC, Lee JS (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm. J Photochem Photobiol A 188(1):112–119

    Article  CAS  Google Scholar 

  37. Walukiewicz W, Detert D, Yu KM, Ristova M (2015) U.S. non-provisional patent application. Attorney Docket No:S-135–S-383

  38. Ristova MM, Francis C, Toma FM, Yu KM, Walukiewicz W (2016), Electrochemical modification of the optical and electrical properties of Cd-rich NixCd1–xO alloys. Sol energy mat Sol Cells 147:127–133.

Download references

Acknowledgments

This work was performed at the EMAT, LBNL and was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Dr. Ristova kindly expresses her gratitude to the Fulbright Visiting Scholar Program at the US Department of State for supporting her stay/research at the Lawrence Berkeley National Laboratory, Grant No. 68130116 during entire 2014. We kindly thank Wei Zhu for RF sputtering of the profiles, Francesca M. Toma for the XPS spectra and Douglas Detert for our fruitful discussions, all affiliated to LBNL 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimoza M. Ristova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristova, M.M., Yu, K.M. Surface modification of NiCdO barrier layer in complex photoanodes and TiO2 protective coating for efficient and stabile water dissociation. J Solid State Electrochem 21, 803–812 (2017). https://doi.org/10.1007/s10008-016-3398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3398-x

Keywords

Navigation